Self-consistent screening in graphene

FOR1807 workshop: Advanced computational methods for strongly correlated quantum systems, Würzburg University February 26th 2015

Shaffique Adam

Yale-NUS College and Center for advanced 2D materials (formerly Graphene Research Center) Department of Physics National University of Singapore

YaleNUSCollege

NATIONAL RESEARCH FOUNDATION PRIME MINISTER'S OFFICE SINGAPORE

Center for Advanced 2D materials (formerly Graphene Research Center)

Showing NUS physicists and collaborators... (not shown: chemists, engineers, people at NTU etc.)

Theory colleagues

Antonio Castro Neto

Giovanni Vignale

Baowen Li

Hsin Lin

Yale 🔤 N

College

Su Ying Quek

NATIONAL RESEARCH

FOUNDATION

lational University of Singapore

Zhang Chun

Vitor Pereira

Experimental colleagues

Barbaros Özyilmaz

Andrew Wee

Slaven Garaj
Sow Chorng Haur
Lay-Lay Chua

Goki Eda

Jtkur Misaidov
Ji Wei
Wei Chen

Kian Ping Loh

Jens Martin

Peter Ho Jose Gomes

Christian Nijhuis

shaffique.adam@yale-nus.edu.sq

Research Group

Postdoctoral Research Fellows

Jeil Jung

Mirco Milletari

Joao Rodrigues

Derek Ho

Graduate Student Researchers

Indra Yudhistira

Navneeth Ramakrishnan

Tang Ho Kin

Jia Ning Leaw

The perfect 2DEG

Graphene is all surface and no bulk

Figure from G. Rutter

"God made the bulk; surfaces were invented by the devil" – Wolfgang Pauli

Delicate interplay between disorder, interactions and quantum effects

Most experiments are in the regime, where all these effects are relevant, but not dominant! E^{\uparrow}

OUNDATION

Colleae

5

Semi-classical picture

Figure from M. Wayne

Map to classical percolation

Disorder

Unlike conventional 2DEGs, graphene remains metallic even for strong disorder

M. Isichenko, Rev. Mod. Phys. (1992)

Dirac materials: interaction strength and density tuned independently

C. Juang, S. Adam, J-H. Chen, E. D. Williams, S. Das Sarma, and M. S. Fuhrer, *Phys. Rev. Lett.* **101**, 146805 (2008).

Fermi liquid away from DP

Weak Interactions = Screening

$$\varepsilon(q) = 1 + \frac{2\pi e^2}{\kappa q} \Pi(q)$$

Screening is "metallic" on distances larger than the Fermi wavelength
Screening is like a dielectric "insulator" on shorter distances
Long-range nature of coulomb tail can not be screened

What about the Dirac point?

Yale 💷 🔞

College

NATIONAL

FOUNDATION

Divergent Fermi velocity

V. Kotov, B. Uchoa, V. Pereira, A. H. Castro Neto and F. Guinea, *Rev. Mod. Phys.* (2012)

G(k+q)

Yale MU

College

NATIONAL

V(q)

 $\varepsilon(q)$

FOUNDATION

No consistent picture at DP

1. Renormalization Group [e.g. Sachdev (1998) / Guinea (1997)]

2. Diagrammatic perturbation approaches [e.g. Das Sarma et al. (2007)]

"marginal Fermi liquid"

Hubbard model on a honeycomb lattice (semi-metal to AFM Mott transition occurs at interaction strengths outside the experimental window) e.g. Sorella, Assaad, Katsnelson (2012-2014).
 "qualitatively similar to a Fermi liquid"

4. Lattice Monte Carlo applied to Dirac fermions with momentum cut-off e.g. Drut and Lahde (2009-2014). "chiral symmetry breaking insulating state for suspended graphene"

Perfect transmission

Universal ballistic σ_{min}

shaffique.adam@yale-nus.edu.sg

Delicate interplay between disorder, interactions and quantum effects

Most experiments are in the regime, where all these effects are relevant, but not dominant! E^{\uparrow}

Scaling theory of localization

Yale NUS

College

NATIONAL

FOUNDATION

No Anderson localization Yale

NATIONAL

FOUNDATION

Example of Thomas-Fermi screening:

$$V_{screened} = \frac{V_{bare}}{\varepsilon[q]}$$

Interactions + Disorder

$$V_{screened} = \frac{V_{bare}}{\varepsilon[q]}$$

Regular 2DEG:
$$\epsilon(q) = 1 + \frac{2e^2}{\hbar^2} \frac{m_e}{q}$$

$$V_{screened} = \frac{V_{bare}}{\varepsilon[q]}$$

Regular 2DEG:
$$\epsilon(q) = 1 + \frac{2e^2}{\hbar^2} \frac{m_e}{q}$$

Dirac electrons:
$$\epsilon(q) = 1 + \frac{e^2}{\hbar v_F} \frac{\sqrt{\pi n}}{q}$$

$$V_{screened} = \frac{V_{bare}}{\varepsilon[q]}$$

Regular 2DEG:
$$\epsilon(q) = 1 + \frac{2e^2}{\hbar^2} \frac{m_e}{q}$$

Dirac electrons:
$$\epsilon(q) = 1 + \frac{e^2}{\hbar v_F} \frac{\sqrt{\pi n}}{q}$$

$$v_{\rm F} \xrightarrow{2{\rm DEG}} \frac{\hbar\sqrt{\pi n}}{2m}$$

$$V_{screened} = \frac{V_{bare}}{\varepsilon[q]}$$

Regular 2DEG:
$$\epsilon(q) = 1 + \frac{2e^2}{\hbar^2} \frac{m_e}{q}$$

Dirac electrons:
$$\epsilon(q) = 1 + \frac{e^2}{\hbar v_F} \frac{\sqrt{\pi n}}{q}$$

Inhomogeneous Dirac:
$$\epsilon(q) = 1 + \frac{e^2}{\hbar v_{\rm F}} \frac{\sqrt{\pi n_{\rm rms}}}{\sqrt{3}q}$$

What is n_{rms}(n_{imp})?

Statistical properties of density fluctuations and the Dirac point

Any physical observable could then be calculated

250 nm x 250 nm

1. Histogram of the carrier density (distribution function):

2. Screened potential correlation function:

What is n_{rms}(n_{imp})?

Statistical properties of density fluctuations and the Dirac point

Any physical observable could then be calculated

Calculate dimensionless quantity:

$$\frac{n_{rms}}{n_{imp}} = ?$$

250 nm x 250 nm

1. Histogram of the carrier density (distribution function):

2. Screened potential correlation function:

$$\varepsilon(q) = \text{const} \quad (\text{dielectric})$$

$$\varepsilon(q) = 1 + \frac{q_{\text{TF}}}{q} \quad (\text{metal})$$

$$\varepsilon(q, k_F, r_s) = \begin{cases} 1 + \frac{r_s \pi}{2}; \quad q << 2k_F \\ 1 + \frac{4k_F r_s}{q}; \quad q >> 2k_F \end{cases} \quad (\text{Dirac})$$

 $\varepsilon(q, r_s, P[n]) \rightarrow \varepsilon(q, r_s, \langle n^2 \rangle, \langle n^3 \rangle, ...)$

 $\varepsilon(q, r_s, P[n]) \rightarrow \varepsilon(q, r_s, \langle n^2 \rangle, \langle n^2 \rangle,$

 $\mathcal{E}(q, r_s, P[n]) \approx \mathcal{E}(q, r_s, \langle n^2 \rangle)$

	$\phi_{scr}(q) \approx \frac{\phi_{bare}(q)}{\varepsilon(q, r_s, n_{rms})}$
$\frac{n_{rms}}{n_{imp}} =$	$2r_s^2 C_0[r_s, d\sqrt{n_{rms}}]$

S. Adam, E. H. Hwang, V. M. Galitski and S. Das Sarma *Proc. Nat. Acad. Sci. USA* **104**, 18392 (2007).

shaffique.adam@yale-nus.edu.sg

Local screening vs. global screening

Yale 🜉 NI

College

E. Rossi, S. Adam and S. Das Sarma, PRB **79**, 245423 (2009)

NATIONAL

FOUNDATION

S. Adam, E. H. Hwang, V. Galitski, S. Das Sarma, Proc. Nat. Acad. Sci. USA **104**, 18392 (2007).

Numerical verification

Puddle Formation

Agreement with experiments [1]

Agreement with experiments [1]

