Probing the stability of the spin-liquid phases in the Kitaev-Heisenberg model using iPEPS

Juan Osorio
Institute for Theoretical Physics
ETH Zürich

Philippe Corboz
Institute for Theoretical Physics
University of Amsterdam

Matthias Troyer
Institute for Theoretical Physics
ETH Zürich

Tensor Networks

Entanglement-based approach

M. Hastings, arXiv:0705.2024
F. Brandao, M. Horodecki, arXiv: I 206.2947

Tensor Networks

Entanglement-based approach

Hilbert Space

$\mathrm{H} \sim \mathrm{V}^{\mathrm{N}}$
Exponential growth
low entanglement corner
$S(A) \sim A$
Area law growth for entanglement entropy

iPEPS

- infinite Projected Entangled-Pair States
- Define arbitrary structure and size of unit cell.
- Include effect of infinite system via so-called environment tensors.

Jordan, Orus, Vidal, Verstraete, Cirac, PRL (2008)

Typically perform ground state search using imaginary-time evolution.
(Full Update)

Contracting the network

Corner Transfer Matrix (CTM)

Nishino, Okunishi, JPSJ65 (1996)
Orus, Vidal, PRB 80 (2009)

$$
C(D, x) \sim x^{3} D^{4}
$$

PEPS contraction Cost $\sim \operatorname{Exp}(N)$

Approximations
Required!

Kitaev-Heisenberg model

The Hamiltonian

$$
H_{i, j}^{(\gamma)}=\cos \varphi \vec{S}_{i} \cdot \vec{S}_{j}+2 \sin \varphi S_{i}^{(\gamma)} S_{j}^{(\gamma)}
$$

- Proposed by Chaloupka et al. as effective model for (layered) Iridate compounds $\mathrm{A}_{2} \mathrm{IrO}_{3}(\mathrm{~A}=\mathrm{Li}, \mathrm{Na})$.
- Nearest-neighbor (pseudo-)spin interactions composed of isotropic Heisenberg + anisotropic Kitaev terms.
- Small system studies show that (zigzag) magnetic order found in Iridate compounds is natural ground state of KH model.

Kitaev's Honeycomb model

Hamiltonian/Phase Diagram

$$
H=-J_{x} \sum_{x \text {-links }} \sigma_{j}^{x} \sigma_{k}^{x}-J_{y} \sum_{y \text {-links }} \sigma_{j}^{y} \sigma_{k}^{y}-J_{z} \sum_{z \text {-links }} \sigma_{j}^{z} \sigma_{k}^{z}
$$

$$
\begin{array}{cl}
\text { Gapless region } & \left|J_{x}\right| \leqslant\left|J_{y}\right|+\left|J_{z}\right| \\
\text { defined by: } & \left|J_{y}\right| \leqslant\left|J_{x}\right|+\left|J_{z}\right| \\
\left|J_{z}\right| \leqslant\left|J_{x}\right|+\left|J_{y}\right|
\end{array}
$$

Gapped (A) phase can be mapped to the toric code.

Gapless (B) phase hosts nonabelian anyonic excitations.

We expect iPEPS to perform well inside gapped (A phase) region. What about the gapless region?
Perfect benchmark.

Kitaev's Honeycomb model

Energy/Magnetization

- Isotropic $\mathrm{J}_{\mathrm{x}}=\mathrm{J}_{\mathrm{y}}=\mathrm{J}_{\mathrm{z}}$ point (B-phase).
-Exact energy per site: -0.3936.
$\bullet i P E P S$ energy:
-D=7 (AFM): -0.3933
-D=7 (FM): -0.393I
- Monotonic decrease with D.
- Spin liquid ground state > Zero magnetization expected.
$\bullet i P E P S$ results:
-D=7 (AFM): 0.01
-D=7 (FM): 0.02
- Monotonic decrease with D.
- Infinite D extrapolation yields vanishing magnetization.
A. Kitaev, Annals of Physics 32 I (2006).
G.Baskaran, S.Mandal, R. Shankar, PRL 98 (2007).

JOI, P. Corboz, M. Troyer, arXiv: I 408.4020.

Kitaev's Honeycomb model

Spin-Spin Correlations

- Results from Baskaran et al. show that only NN correlations of corresponding bond type are non-vanishing, eg.

$$
\begin{aligned}
\gamma(i, j)=x \rightarrow\left\langle\sigma_{i}^{x} \sigma_{j}^{x}\right\rangle & =0.525 \\
\left\langle\sigma_{i}^{y} \sigma_{j}^{y}\right\rangle & =0 \\
\left\langle\sigma_{i}^{z} \sigma_{j}^{z}\right\rangle & =0
\end{aligned}
$$

- Data not shown $<10^{-3}$.
- Systematic improvement upon increasing bond dimension.
G.Baskaran, S.Mandal, R. Shankar, PRL 98 (2007).

JOI, P. Corboz, M. Troyer, arXiv: I 408.4020.

Kitaev-Heisenberg model

Previous Results

- Type of transition observed in th quadrant differed for small systems vs SP Mean-Field study.
- Survival of QSL phases in TD limit remained under debate.
- Type of phase transitions from AQSL to symmetry broken not certain.

$$
H_{i, j}^{(\gamma)}=\cos \varphi \vec{S}_{i} \cdot \vec{S}_{j}+2 \sin \varphi S_{i}^{(\gamma)} S_{j}^{(\gamma)}
$$

finite or not?

Kitaev-Heisenberg model iPEPS Approach

Energy crossing + OP analysis Jolp. Coroboz, M.TTover, arivi. 408.4020.

-Perform initial runs mapping out phases arising in phase diagram.
-Find representative states deep inside each phase. -Compare energies + OP of different phases in the vicinity of phase transitions.
-"Hysteretic" behavior will hint towards Ist order type transitions.

Image from J. Chaloupka, G. Jackeli, G. Khaliullin, PRL IIO (2013).

Kitaev-Heisenberg model

Spin Liquid to Stripy Transition

Energy Crossings

- Weak energy crossing at $\varphi \sim-80^{\circ}(D=6)$ suggests ${ }^{\text {st }}$ order phase transition.
-Transition point shifts towards lower φ with increasing D.

Kitaev-Heisenberg model

Spin Liquid to Stripy Transition

Magnetic Order Parameters

-Discontinuous behavior for Magnetization/Stripy order parameters in GS (red diamonds/cyan circles). -Green/blue data show OP values for each of the phases. -Discontinuity expected to remain finite in infinite D limit.

Kitaev-Heisenberg model

Spin Liquid to Stripy Transition

JOI, P. Corboz, M. Troyer, arXiv: I 408.4020.

Bond Order Parameter

Dominant
 NN Correlations

Kitaev-Heisenberg model

FM Spin Liquid to Symmetry-broken

JOI, P. Corboz, M. Troyer, arXiv: I 408.4020.

Kitaev-Heisenberg model

AFM Spin liquid to symmetry broken

JOI, P. Corboz, M. Troyer, arXiv: I 408.4020.

Kitaev-Heisenberg model

Summary

	iPEPS	Lanczos
ASL - Néel	88°	88°
ASL - Zigzag	92°	92°
FSL - Stripy	-80°	-76°
FSL - Ferro	-102°	-108°
Ferro - Zigzag	161°	162°
Stripy - Néel	-33°	-34°

