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Introduction
Relativistic four-fermion and Yukawa models have a long 
history. 

Can be studied using lattice field theories. 
was popular in the late eighties. 
the model we discuss here was studied long ago!  

Many calculations of fermionic critical points in the mid 
nineties. 

studies use HMC but add a small fermion mass. 
most calculations on lattices about 403 or less. 
sign problems hinder applications. 
critical exponents not usually measured accurately.



Traditional (HMC) algorithms involve inverses of 
(singular) matrices whose size is the space-time 
volume. 

Recently, diagrammatic Monte Carlo methods have 
become popular. 

Fermion bag approach: a generalization of this idea 
applied to lattice field theories. 

Fermion bags  give further insight into diagrams 
duality between weak and strong couplings. 

some old sign problems become solvable. 

ideas for speeding up fermion algorithms.

Rubtsov, Savkin, Lichtenstein, Prokof’ev, Svistunov, Gull ,…

S.C. (2008), PRD82 (2010)

S.C and Li PRL 108 (2012),  S.C. EPJA49 (2013)

S.C. PRD86, (2012); Huffman and S.C PRB89, (2014);

S.C. and Ayyar, in preparation

Blankenbecler, Scalapino, Sugar, Scalettar, Duane, Kennedy, Pendleton, ….



Highlights	  
Tradi-onal	  Approach	  
Debbio	  &	  Hands	  (1997),	  
Barbour	  et	  al	  (1998)

Fermion	  Bag	  Approach	  
S.C	  &	  A.	  Li	  (2012,	  2013)

Calcula&ons	  with	  exactly	  
massless	  fermions m	  =	  0.025	  -‐	  0.005 m	  =	  0

Largest	  volumes	  possible 123	  -‐	  403 123	  -‐	  403

Cri&cal	  exponents	  calculated	  
about	  10	  &mes	  more	  
accurately.

ν	  =	  0.80(15),	  	  
η	  =	  0.40(20),	  0.70(15)

ν	  =	  0.849(8)	  
η	  =	  0.633(8)	  
ηψ	  =	  0.373(3)

Highlights of Fermion Bag Approach



Goal of this talk: 

Discuss how the fermion bag approach 
allows us to solve another old, but interesting 

lattice field theory model 
with an exotic quantum transition  

which may be of interest in CM physics.
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Symmetries: Translations, Rotations, Reflection, SU(4)

Action on a cubic space-time lattice:
4d models: Hasenfratz, Neuhaus, Lee, Shigemitsu, Shrock, Smit, De,Bock …. (1987-1992)

Fermion bilinear condensates necessarily
break the SU(4) symmetry.



PMS  
Strong paramegnetic phase 

(massive fermions,  
no fermion-bilinear condensate)

PMW 
Weak paramegnetic phase 

(massless fermions)

FM  
Ferromagnetic phase 
(massive fermions) 

(with a fermion-bilinear condensate)

Phase Diagram

Traditional scenario
Stephanov, Tsypin (1990), Ebihara, Kondo (1992)
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tempts seem to have failed, as far as we know the rich phase
structure that was predicted within various models was only
partially verified with Monte Carlo calculations. In particu-
lar, results in the intermediate coupling region may not have
been reliable since computational techniques were still in their
infancy at that time. While most of the studies of the PMS
phase focused on four-dimensions, there have been studies
more recently in three space-time dimensions where similar
phase structures were found [27]. Analytic predictions using
mean field theory also emerged at the same time [28–32]. A
review of these early results can be found in [33].

In this work we revisit a simple lattice four-fermion model
with two flavors of staggered fermions interacting with an on-
site four-fermion coupling. Our model is a limiting case of a
lattice Yukawa model studied long ago [20]. Earlier studies
were performed in four-dimensions, where it was established
that there is a massless fermion phase at weak couplings and
a PMS phase at strong couplings. The weak coupling phase
was referred to as the weak paramagnetic or PMW phase. The
authors used mean field theory in the intermediate coupling
region and found that the two phases are separated from each
other by a more conventional massive fermion phase with a
non-zero chiral condensate (referred to as the ferromagnetic
or FM phase). This phase diagram is shown as scenario A in
Fig. 1. On the other hand a different mean field theory calcu-
lation, which becomes exact in the limit of large dimensions,
found a direct first order transition between the massless and
the massive phase [29–32]. This is shown as scenario B in
Fig. 1. As far as we know, a controlled first principles Monte
Carlo calculation has never been performed. In this work we
perform such a calculation in three space-time dimensions and
find a result consistent with scenario B, but with a second or-
der transition between the PMWand the PMS phase. This sec-
ond order critical point cannot be described using traditional
four-fermion field theory that involves spontaneous symme-
try breaking and the formation of a fermion bilinear conden-
sate. Interestingly, a very similar second order transition was
recently found in an extended Hubbard model on a bilayer-
honeycomb lattice, where it was argued that the exotic critical
point is a multi-critical point where three topology driven sec-
ond order phase transition lines meet [34].

Our paper is organized as follows. In the next section we
present our model, its symmetries and the observables we
wish to compute. In section III we discuss how our model can
be viewed as a limit of a lattice Yukawa model and argue the
presence of the PMW and the PMS phase at weak and strong
couplings respectively. We also review results from the mean
field theory calculation that predicts a direct first order tran-
sition between the two phases. We then discuss the fermion
bag approach in IV, which we use to perform Monte Carlo
calculations. Section V contains a discussion of the specific
Monte Carlo update procedures we have used in our work. In
section VI we present our numerical results and its analysis
that provides evidence for a single second order transition be-
tween the two phases and in section VII we discuss why we
believe there is no order parameter that distinguishes the two
phases. Finally, section VIII contains our conclusions.

PMSPMW FM

U = 0 U = ∞

U = ∞U = 0

PMW PMS

Scenario A

Scenario B

U
c

U c U'c

FIG. 1: The two possible phase diagrams for our model based on
previous studies. Our work provides strong evidence in favor of sce-
nario B with a second order transition between the PMW phase and
the PMS phase.

II. MODEL AND SYMMETRIES

The model we study contains two flavors of staggered
fermions with an onsite four-fermion interaction. The Eu-
clidean action of our model is given by

S = S0 − U
∑

x

{

ψx,1ψx,1ψx,2ψx,2

}

(1)

where S0 is the free massless staggered fermion action

S0 =
∑

i=1,2

∑

x,y

ψx,i Mx,y ψy,i. (2)

Here ψx,i,ψx,i, i = 1, 2 are four independent Grassmann val-
ued fields, M is the well known staggered fermion matrix
given by

Mx,y =
∑

α̂

ηx,α̂
2

[δx,y+α̂ − δx,y−α̂], (3)

x ≡ (x1, x2, x3) denotes a lattice site on a 3 dimensional cu-
bic lattice and α̂ = 1̂, 2̂, 3̂ represent unit lattice vectors in the
three directions. The staggered fermion phases are defined as
usual: ηx,1̂ = 1, , ηx,2̂ = (−1)x1 , and ηx,3̂ = (−1)x1+x2 . We
study cubical lattices of equal size L in each direction with
anti-periodic boundary conditions. Since the lattice is cubi-
cal we can define a parity for each site using the sign factor
εx = (−1)x1+x2+x3 . If εx = 1 we define the site to be even
and otherwise it is odd. Our model is just one of the many pos-
sible lattice Gross-Neveu models that have been considered in
the literature [2, 35–38], however the PMS phase at strong
couplings is a peculiarity of our model and is not present in
most models. This difference has been pointed out in earlier
work [20].
It is easy to verify that the action given in Eq. (1) is sym-

metric under the usual space-time lattice transformations and
internal SU(4) transformations given below [15, 16]:

Exotic scenario: 
A single second order transition 

Slagle, You and Xu (2014)
Ayyar and S.C. arXiv:1410.6474
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Fermion Bags
Instead of using the HS transformation  
expand in the interaction strength:

Z =

Z
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Y

x
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k = number of monomers

There are two different ways of performing the 
Grassmann integral.
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Weak coupling approach:
Z = Det(D)

X

[n]

Uk Det(G )

G is a k x k matrix

Strong coupling approach:
Z =

X

[n]

Uk Det(W )

W is a (V-k) x (V-k) matrix

Weak Coupling Diagrams

Strong Coupling Diagrams
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FIG. 2: An example of a monomer configuration [n] showing free
fermion bags on a two dimensional lattice. The filled circles repre-
sent monomers and the connected regions without monomers form
free fermion bags.

viewpoint are uniquely defined for every monomer configura-
tion. An interesting feature of the strong coupling viewpoint
is that at sufficiently strong couplings there are many distinct
fermion bags, which we label as B = 1, 2..., and fermions
from one bag cannot hop to a different bag. In contrast in the
weak coupling viewpoint there is a single fermion bag con-
taining all monomer sites. Based on these two viewpoints we
can write the partition function in two different but equivalent
ways:

Z =
∑

[n]

UNm

∏

B

(

Det(WB)
)2

(21a)

Z =
(

Det(M)
)

∑

[n]

UNm

(

Det(G)
)2

, (21b)

where Nm represents the number of monomers in the config-
uration,M is the free staggered fermion matrix defined in (2),
WB represents the free staggered fermion matrix connecting
the sites within the bag B, and G represents a Nm ×Nm free
staggered propagator matrix connecting monomer sites. The
elements of G are given by

Gx,y =
−i

L3

∑

k

eik·(x−y)

∑

α′ ηx,α′ sin kα′

∑

α sin
2 kα

(22)

where k ≡ (k1, k2, k3) where kα = (2n + 1)π/L, n =
0, 1.., L − 1 due to anti-periodic boundary conditions. At
weak couplings there are very few monomers and the weak
coupling viewpoint becomes more useful for calculations and
the Boltzmann weight of each monomer configuration is noth-
ing but the sum over all Feynman diagrams. Thus, the weak
coupling viewpoint is exactly identical to the well known
diagrammatic determinantal Monte Carlo methods [46–49].

On the other hand at strong couplings, when the number of
monomers becomes comparable to the volume, the strong
coupling view point becomes useful for calculations since free
fermion bags become small. As we discuss below, it is also
easy to understand some of the strong coupling results of the
previous section intuitively.
Expressions for observables can also be derived easily in

the fermion bag approach. For example, in the strong coupling
viewpoint the two point fermion correlation function is given
by

⟨ψx,i ψy,i⟩ =
1

Z

∑

[n]

UNm

∏

B

(

Det(WB)
)2

W−1
B;x,y,

(23)
where W−1

B;x,y is the inverse of the Dirac operator within the
free fermion bag B that contains the sites x and y. It is under-
stood that when either of the sites x or y contains a monomer,
that configuration does not contribute to the correlation func-
tion. Further, since fermions cannot hop from one fermion bag
to another, x and y are also forced to be within the same bag.
With this insight it is easy to see why fermion correlations
decay exponentially at strong couplings. Since the lattice is
filled with monomers, large fermion bags are suppressed ex-
ponentially and fermions are confined within small regions.
The argument that shows that even bosonic correlations de-

cay exponentially is more subtle. In principle, it is possible
to have a single insertion of ψi,xψi,x within special fermion
bags that allow a zero mode in the matrixWB. Clearly, such
bags do not contribute to the partition function since without
the insertion of ψi,xψi,x the determinant Det(WB) vanishes.
However, with the insertion of ψi,xψi,x one row and one col-
umn are removed from the matrix and then the determinant no
longer vanishes. This is very similar to the argument of how
instantons can contribute to the chiral condensate in single fla-
vor QCD. However, since there are two flavors in our model
and ψi,xψi,x only involves the flavor i, the determinant of the
other flavor still vanishes due to the zero mode in WB of the
second flavor. Thus, single insertion of a fermion bilinear is
forbidden in our model. For this reason bosonic correlation
functions also get contribution only when both x and y are
within the same bag. For example the expression for one of
the correlation functions is given by

⟨ψxψx,i ψy,iψy,i⟩ =
1

Z

∑

[n]

UNm

∏

B

(

Det(WB)
)2

×
(

W−1
B;x,y

)2
. (24)

Since x and y are within the bag, it too decays exponentially at
sufficiently large coupling as we found in the previous section.

V. MONTE CARLO ALGORITHMS

We have constructed three different Monte Carlo algo-
rithms to update the monomer configurations [n]. The first is
a block algorithm that creates, destroys and moves monomers
within blocks. The second is a worm algorithm that creates

space-time splits 
into regions 

that look like “bags” 
inside which fermions propagate.

D
ua

lit
y



A fermion bag refers to a
group of fermion degrees of freedom.

If we can make sure
that a resummation (trace) over the degrees of

freedom inside a fermion bag yields positive numbers
then there are no sign problems.

In the fermion bag approach the full
partition function is written as a sum
over configurations of fermion bags.

Some unsolved sign problems 
can be solved using this idea.

S.C. PRD86, (2012); Huffman and S.C PRB89, (2014);

In general we can view both approaches 
as the “fermion bag approach”

Can also be used to accelerate
fermion algorithms

Review Article: S.C. EPJA49 (2013)

S.C. and Ayyar, in preparation
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FIG. 3: Plots of equilibration for the three observables ρm, χ1 and χ2, starting from a configuration with zero monomers at L = 20, U = 0.95.
The insets show the Monte Carlo time history for 900 sweeps using ALG2. The average of the data from the inset is shown as a solid line in
the main plots. The open squares are average data from 500 independent runs after a single sweep starting from an equilibrated configuration.
The plot demonstrates that instead of running a single computer for many sweeps, one can run many computers for a single sweep and average
the data.

D. Equilibration, Auto-correlation and Parallelization

We have used the block algorithm (or ALG1), the worm
algorithm (or ALG2) and the heat-bath sweep algorithm (or
ALG3) as a cross check against each other to make sure they
are free of errors. These tests along with comparisons with
some exact calculations are discussed in the appendix. In or-
der to study equilibration and autocorrelations we define the
concept of a sweep, as performing the required number of lo-
cal updates such that all lattice sites are stochastically flipped
at least once. For example in the block algorithm we pick
roughly L3/63 random blocks in a sweep. On the other hand
since the worm update involves choosing a site at random and
updating a few sites within its neighborhood, a sweep con-
sists of repeating the worm update at least a volume number
of times. Each heat bath update on the other hand is exactly
one sweep.
As in previous studies [45] we have observed that worm al-

gorithms based on the fermion bag approach usually produce
independent equilibrated configurations within a few sweeps
independent of the lattice size. This continues to be true even
in our work. We provide some evidence for this in Fig. 3
where we show the Monte Carlo time history of our three ob-
servables at L = 20 and U = 0.95 for 900 sweeps (in the
inset) and the first 20 sweeps are shown in the main graph.
The solid lines in the main graphs show the average obtained
from the whole data set. As one can see, the monomer number
reaches the average value in roughly about 5 sweeps and then
begins to fluctuate.
If we make the drastic assumption that once equilibration is

reached, a single sweep is sufficient to produce another inde-
pendent configuration, then using several hundred computing
cores each starting with an equilibrated configuration but dif-
ferent random number sequences, we should be able to gen-
erate an independent configuration after a single sweep from
each computer core. We can then average the data from all
the cores and propose it as the final average. We can of course
continue the runs of each of the cores for several sweeps if
necessary and monitor the fluctuations. In Fig. 3 the solid
squares represent such an average over 500 computer cores
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FIG. 4: The variation of the monomer density ρm (a four-point con-
densate) as a function of U at L = 8, 12 and 16. The inset shows the
change in ρm as a function of L at U = 1.0, 1.1 and 1.2 where the
variation is the maximum. By L = 16 we find that ρm has reached
its thermodynamic limit at all values of U .

for 20 sweeps. It is clear that after each sweep the data from
the 500 independent cores produces a number consistent with
the average over 900 sweeps on a single core. This feature
continues to hold at other lattice sizes and couplings, some of
which are shown in the appendix. Based on this result, in our
study we use several hundred cores in parallel and run for 5-10
sweeps, where each core starts from an equilibrated configu-
ration. The final answer is obtained as an average over such
short runs on hundreds of cores. While we are confident of
our errors, in order to be conservative we multiply them by a
factor of two uniformly across the board when we analyze our
data.

VI. ANALYSIS AND RESULTS

Based on weak and strong coupling analysis we have al-
ready argued in section III that the model contains at least two

critical point  ≈ 0.96

No indication of a strong
first order transition



Susceptibility 10

0 0.5 1 1.5 2 2.5 3
U

0

2

4

6

8

χ
1

L=28
L=24
L=20
L=16
L=12
L=8

8 12 16 20 24 28
L

0

1

2

3

4

5

6

χ
1

U=1.200
U=1.120
U=0.960
U=0.800
0.13 L

0 0.5 1 1.5 2 2.5 3
U

0

2

4

6

8

χ
2

L=28
L=24
L=20
L=16
L=12
L=8

8 12 16 20 24 28
L

0

1

2

3

4

5

χ
2

U=1.200
U=1.120
U=0.960
U=0.800
0.12 L

FIG. 5: Plots of the susceptibilities χ1 (left) and χ2 (right) as a function of the coupling constant U for lattice sizes ranging from L = 8 to
L = 28. The inset shows the finite size scalings in the critical region. There is no sign of the L3 divergence expected in the presence of a
non-zero fermion bilinear condensate. A roughly linear divergence appears in the critical region consistent with a second order critical scaling.

phase transition between the two phases. In table I we tabulate
all our data.
We first focus on the average monomer density ρm defined

in Eq. (11) as a function of U . This is plotted in Fig. 4 for
L = 8, 12 and 16. We find the density to be a smooth function
of U for all values of L and most importantly the thermody-
namic limit is reached by L = 16 for all values of U . There is
no evidence for a first order transition. However, since there
should at least be one transition as a function of U , the quick
but smooth rise of the monomer density around U ≈ 1 can
be taken to be a signal for such a second order transition. The
lack of any other feature in ρm as a function of U also pro-
vides evidence that there is only a single phase transition.
Since ρm is not a critical quantity, we need to look at other

observables like the chiral susceptibilities χ1 and χ2 defined
in Eq. (9), in order to understand the properties of the phase
transition. These susceptibilities couple to long wavelength
modes of the theory and will diverge at a second order criti-
cal point. Another interesting feature of the definitions of χ1

and χ2 is that the disconnected component has not been sub-
tracted. Hence in the presence of non-zero fermion bilinear
condensates we expect both χ1 and χ2 to diverge as L3. In
Fig. (5) we plot χ1 and χ2 as functions of U for various val-
ues of L. In the inset of Fig. (5) we plot the finite size effects
on the susceptibilities around U ≈ 1 where such effects are
maximum. We find that for a fixed L both susceptibilities are
smooth functions of U with a clear peak around U ≈ 1 as
expected from ρm data. As L increases, the location of the
peak Upeak moves to the left and the value of the peak χpeak

i
increases.
Surprisingly there is no indication whatsoever for the L3

divergence in the susceptibilities from Fig. (5). As the inset
shows, at both U = 0.8 and U = 1.2 the susceptibilities sat-
urate for large L, while at U = 0.96, both the susceptibilities
do seem to diverge but only linearly. As we discuss below,
this divergence is consistent with the usual scaling at a sec-
ond order critical point. Based on this evidence we conclude

that both fermion bilinear condensates ⟨φx,1⟩ and ⟨φx,2⟩ van-
ish for all values of U . Due to the SU(4) symmetry present in
the model the same must be true for all the other condensates
discussed in section II. Finally, we note that both χ1 and χ2

are very similar for all values of U , except near U = 0 where
one can see from Fig. (5) that χ1 ̸= 0 but χ2 = 0 as expected.
We next quantify the divergence of χ1 and χ2 around U ≈

1 in order to verify that it is consistent with a second order
transition. Defining x = (U − Uc)L1/ν , near a second order
transition we expect both susceptibilities to satisfy the finite
size scaling relations,

χi(U,L) = L2−ηfi(x), (34)

where η and ν are the usual critical exponents and fi(x) are
analytic functions for small values of x. In previous studies
it was possible to use Eq. (34) by expanding f(x) in a power
series up to x4, and fit the Monte Carlo data to it and thus
extract the critical coupling and exponents [43, 51]. Unfortu-
nately, in our current study such an analysis seems to be quite
unstable. It is possible that the function f(x) cannot easily be
approximated with a few terms in the range of the available
data. Hence, we need to find a way to combine our data in the
small x region with some information from the large x region
using a more elaborate analysis.
Consider χ(U,L) as a function of U for a fixed value of L.

From Fig. 5 we see that this function has a peak at some value
U = Upeak. On the other hand from Eq. (34) we notice that
the peak occurs at the value x = xpeak where df(x)/dx = 0.
Althoughxpeak will not be small it will still satisfy the relation

Upeak = Uc +
xpeak

L1/ν
. (35)

Further, the value of χ at U = Upeak will be given by

χpeak
i = L2−ηfi(xpeak). (36)

Thus, if we know the values of Upeak and χpeak we can com-
bine Eqs. (35) and (36) valid at large values of x along with
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more details:
Ayyar and S.C. arXiv:1410.6474

In the presence of a non-zero

fermion bilinear condensate we expect �2 ⇠ L3.
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Fit Range of U and L η ν Uc xpeak f1(xpeak) f1(xpeak) χ2

U : 0.93 − 1.0, L ≥ 16 0.940(5) 0.93(3) 0.957(1) 2.6(1) 0.28(1) 0.27(1) 2.4
U : 0.93 − 1.0, L ≥ 20 0.940(9) 0.95(5) 0.957(1) 2.5(1) 0.27(3) 0.26(3) 1.1

U : 0.95 − 1.0, L ≥ 16(*) 0.884(1) 1.21(3) 0.959(1) 1.24(5) 0.228(3) 0.217(3) 2.4
U : 0.95 − 1.0, L ≥ 20(*) 0.884(1) 1.24(2) 0.958(1) 1.20(5) 0.228(3) 0.217(3) 1.9

TABLE III: Results for the critical exponents η, ν and the critical coupling Uc from combined fits of four data sets as explained in the text.
The (*) in the last two rows indicate that data in table II at L = 12, 16 were included in the fit, unlike the first two fits where data in table II
from smaller lattice sizes were dropped consistently.
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FIG. 7: Universal scaling plots of χ/L2−η as a function of (U−Uc)L
1/ν using all Monte Carlo data in the critical region. The top two figures

use η = 0.94, ν = 0.95, and Uc = 0.957 while the bottom two figures use η = 0.884, ν = 1.24 and Uc = 0.958.

rameter that distinguishes the two phases. By definition a lo-
cal lattice order parameter Ox is made with Grassmann fields
in the vicinity of the lattice site x. It is zero in one phase for
a symmetry reason, but becomes non-zero in the other phase
because the symmetry is spontaneously broken. A simple in-
tuitive argument shows that fermion bilinear order parameters

cannot exist. First we note that in a finite volume by defini-
tion we must have ⟨Ox⟩ = 0 for symmetry reasons. In order to
study whether the symmetry can break spontaneously, one has
to compute the behavior of the two point correlation function

⌘ : 0.88 � 0.94

⌫ : 0.95 � 1.2

Estimates

Larger lattices are
necessary to compute

critical exponents more
accurately



Fluctuations as fermion bags
Fluctuations of a background configuration 

can naturally define fermion bags

Here we assume some background configuration of monomers is given.

[nf ] represents the fluctuation with k sites di↵erent from the background.

Z = Det(A
background

)
X

[nf ]

Uk Det(�
fluctuation

)

k ⇥ k matrix

When k is small 
this idea can be used to speed up the calculations!
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FIG. 2: An example of a monomer configuration [n] showing free
fermion bags on a two dimensional lattice. The filled circles repre-
sent monomers and the connected regions without monomers form
free fermion bags.

viewpoint are uniquely defined for every monomer configura-
tion. An interesting feature of the strong coupling viewpoint
is that at sufficiently strong couplings there are many distinct
fermion bags, which we label as B = 1, 2..., and fermions
from one bag cannot hop to a different bag. In contrast in the
weak coupling viewpoint there is a single fermion bag con-
taining all monomer sites. Based on these two viewpoints we
can write the partition function in two different but equivalent
ways:

Z =
∑

[n]

UNm

∏

B

(

Det(WB)
)2

(21a)

Z =
(

Det(M)
)

∑

[n]

UNm

(

Det(G)
)2

, (21b)

where Nm represents the number of monomers in the config-
uration,M is the free staggered fermion matrix defined in (2),
WB represents the free staggered fermion matrix connecting
the sites within the bag B, and G represents a Nm ×Nm free
staggered propagator matrix connecting monomer sites. The
elements of G are given by

Gx,y =
−i

L3

∑

k

eik·(x−y)

∑

α′ ηx,α′ sin kα′

∑

α sin
2 kα

(22)

where k ≡ (k1, k2, k3) where kα = (2n + 1)π/L, n =
0, 1.., L − 1 due to anti-periodic boundary conditions. At
weak couplings there are very few monomers and the weak
coupling viewpoint becomes more useful for calculations and
the Boltzmann weight of each monomer configuration is noth-
ing but the sum over all Feynman diagrams. Thus, the weak
coupling viewpoint is exactly identical to the well known
diagrammatic determinantal Monte Carlo methods [46–49].

On the other hand at strong couplings, when the number of
monomers becomes comparable to the volume, the strong
coupling view point becomes useful for calculations since free
fermion bags become small. As we discuss below, it is also
easy to understand some of the strong coupling results of the
previous section intuitively.
Expressions for observables can also be derived easily in

the fermion bag approach. For example, in the strong coupling
viewpoint the two point fermion correlation function is given
by

⟨ψx,i ψy,i⟩ =
1

Z

∑

[n]

UNm

∏

B

(

Det(WB)
)2

W−1
B;x,y,

(23)
where W−1

B;x,y is the inverse of the Dirac operator within the
free fermion bag B that contains the sites x and y. It is under-
stood that when either of the sites x or y contains a monomer,
that configuration does not contribute to the correlation func-
tion. Further, since fermions cannot hop from one fermion bag
to another, x and y are also forced to be within the same bag.
With this insight it is easy to see why fermion correlations
decay exponentially at strong couplings. Since the lattice is
filled with monomers, large fermion bags are suppressed ex-
ponentially and fermions are confined within small regions.
The argument that shows that even bosonic correlations de-

cay exponentially is more subtle. In principle, it is possible
to have a single insertion of ψi,xψi,x within special fermion
bags that allow a zero mode in the matrixWB. Clearly, such
bags do not contribute to the partition function since without
the insertion of ψi,xψi,x the determinant Det(WB) vanishes.
However, with the insertion of ψi,xψi,x one row and one col-
umn are removed from the matrix and then the determinant no
longer vanishes. This is very similar to the argument of how
instantons can contribute to the chiral condensate in single fla-
vor QCD. However, since there are two flavors in our model
and ψi,xψi,x only involves the flavor i, the determinant of the
other flavor still vanishes due to the zero mode in WB of the
second flavor. Thus, single insertion of a fermion bilinear is
forbidden in our model. For this reason bosonic correlation
functions also get contribution only when both x and y are
within the same bag. For example the expression for one of
the correlation functions is given by

⟨ψxψx,i ψy,iψy,i⟩ =
1

Z

∑

[n]

UNm

∏

B

(

Det(WB)
)2

×
(

W−1
B;x,y

)2
. (24)

Since x and y are within the bag, it too decays exponentially at
sufficiently large coupling as we found in the previous section.

V. MONTE CARLO ALGORITHMS

We have constructed three different Monte Carlo algo-
rithms to update the monomer configurations [n]. The first is
a block algorithm that creates, destroys and moves monomers
within blocks. The second is a worm algorithm that creates

weak couplings

strong couplings
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FIG. 2: An example of a monomer configuration [n] showing free
fermion bags on a two dimensional lattice. The filled circles repre-
sent monomers and the connected regions without monomers form
free fermion bags.

viewpoint are uniquely defined for every monomer configura-
tion. An interesting feature of the strong coupling viewpoint
is that at sufficiently strong couplings there are many distinct
fermion bags, which we label as B = 1, 2..., and fermions
from one bag cannot hop to a different bag. In contrast in the
weak coupling viewpoint there is a single fermion bag con-
taining all monomer sites. Based on these two viewpoints we
can write the partition function in two different but equivalent
ways:

Z =
∑

[n]

UNm

∏

B

(

Det(WB)
)2

(21a)

Z =
(

Det(M)
)

∑

[n]

UNm

(

Det(G)
)2

, (21b)

where Nm represents the number of monomers in the config-
uration,M is the free staggered fermion matrix defined in (2),
WB represents the free staggered fermion matrix connecting
the sites within the bag B, and G represents a Nm ×Nm free
staggered propagator matrix connecting monomer sites. The
elements of G are given by

Gx,y =
−i

L3

∑

k

eik·(x−y)

∑

α′ ηx,α′ sin kα′

∑

α sin
2 kα

(22)

where k ≡ (k1, k2, k3) where kα = (2n + 1)π/L, n =
0, 1.., L − 1 due to anti-periodic boundary conditions. At
weak couplings there are very few monomers and the weak
coupling viewpoint becomes more useful for calculations and
the Boltzmann weight of each monomer configuration is noth-
ing but the sum over all Feynman diagrams. Thus, the weak
coupling viewpoint is exactly identical to the well known
diagrammatic determinantal Monte Carlo methods [46–49].

On the other hand at strong couplings, when the number of
monomers becomes comparable to the volume, the strong
coupling view point becomes useful for calculations since free
fermion bags become small. As we discuss below, it is also
easy to understand some of the strong coupling results of the
previous section intuitively.
Expressions for observables can also be derived easily in

the fermion bag approach. For example, in the strong coupling
viewpoint the two point fermion correlation function is given
by

⟨ψx,i ψy,i⟩ =
1

Z

∑

[n]

UNm

∏

B

(

Det(WB)
)2

W−1
B;x,y,

(23)
where W−1

B;x,y is the inverse of the Dirac operator within the
free fermion bag B that contains the sites x and y. It is under-
stood that when either of the sites x or y contains a monomer,
that configuration does not contribute to the correlation func-
tion. Further, since fermions cannot hop from one fermion bag
to another, x and y are also forced to be within the same bag.
With this insight it is easy to see why fermion correlations
decay exponentially at strong couplings. Since the lattice is
filled with monomers, large fermion bags are suppressed ex-
ponentially and fermions are confined within small regions.
The argument that shows that even bosonic correlations de-

cay exponentially is more subtle. In principle, it is possible
to have a single insertion of ψi,xψi,x within special fermion
bags that allow a zero mode in the matrixWB. Clearly, such
bags do not contribute to the partition function since without
the insertion of ψi,xψi,x the determinant Det(WB) vanishes.
However, with the insertion of ψi,xψi,x one row and one col-
umn are removed from the matrix and then the determinant no
longer vanishes. This is very similar to the argument of how
instantons can contribute to the chiral condensate in single fla-
vor QCD. However, since there are two flavors in our model
and ψi,xψi,x only involves the flavor i, the determinant of the
other flavor still vanishes due to the zero mode in WB of the
second flavor. Thus, single insertion of a fermion bilinear is
forbidden in our model. For this reason bosonic correlation
functions also get contribution only when both x and y are
within the same bag. For example the expression for one of
the correlation functions is given by

⟨ψxψx,i ψy,iψy,i⟩ =
1

Z

∑

[n]

UNm

∏

B

(

Det(WB)
)2

×
(

W−1
B;x,y

)2
. (24)

Since x and y are within the bag, it too decays exponentially at
sufficiently large coupling as we found in the previous section.

V. MONTE CARLO ALGORITHMS

We have constructed three different Monte Carlo algo-
rithms to update the monomer configurations [n]. The first is
a block algorithm that creates, destroys and moves monomers
within blocks. The second is a worm algorithm that creates

general couplings
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Conclusions
• Fermion bags (or equivalently diagrammatic Monte 

Carlo methods) seem ideally suited to study a variety 
of strongly correlated fermion models. 

• There is a simple 3d lattice model which shows an 
exotic quantum phase transition between a massless 
and a massive fermion phase. No symmetry breaking 
of either side! 

• Physics of topology? What about 4d? 

• The phase transition should be in the same universality 
class as the one recently proposed in a model of Dirac 
fermions on a bilayer honeycomb lattice.


