Exact Diagonalization for topological phases driven by interactions

M. Daghofer

Institute for Functional Matter and Quantum Technologies, University of Stuttgart
February 26, 2015

Universität Stuttgart

Thanks

- J. W. F. Venderbos (IFW Dresden \rightarrow MIT): QAH, FCl
- S. Kourtis (IFW Dresden \rightarrow Cambridge): FCI, topological pinball liquid
■ M. Hohenadler (Univ. Würzburg): fermions on honeycomb
- A. Fischer (IFW Dresden)
- J. van den Brink (IFW Dresden)

Integer Quantum Hall Effect

- transverse conductivity quantized
- Standard for electrical resistance
- is (first) Chern number
- implies edge states

figures: M.E. Cage, Springer 1987; M. Hasan and C. Kane, RMP 82, 3045 (2010); wikipedia

Quantum Anomalous Hall States

- Haldane's proposal: open gaps in graphene by breaking of time reversal symmetry

Complex hoppings instead of a magnetic field
F. D. M. Haldane, PRL 61, 2015 (1988)

- Spin-orbit coupling
- Topological features from correlations? S. Raghu et al., PRL 100, 156401 (2008)
- Example: Checkerboard lattice with quadratic band crossing K. Sun et al., PRL 103, (2009)
- Kondo-lattice model on frustrated lattices e.g. I. Martin and C. D. Batista, PRL 101, 156402 (2008)

Spinless fermions on honeycomb

- Mean-field: 2nd-neighbour Coulomb repulsion V_{2} drives type of bond order that gives QAH S. Raghu et al., PRL 100, 156401 (2008)
- Exact diagonalization: some tendency to QAH

$$
\left.\left.\frac{1}{L^{2}}\langle | \sum_{\langle\langle i, j\rangle\rangle}\left(c_{i}^{\dagger} c_{j}-c_{j}^{\dagger} c_{i}\right)\right|^{2}\right\rangle
$$

- ... but stronger tendency to charge order.

ED phase diagram:

February 26, 2015

Fluctuations beyond mean-field

- Systematic improvement over mean field: Quantum fluctuations on more and more bonds
- Used cluster perturbation theory / variational cluster approach: bonds within cluster exact, outside mean field
- QAH disappears for 6 cluster sites

M. Daghofer \& M. Hohenadler, PRB 89, 035103 (2014); N. A. García-Martínez et al. PRB 88, 245123 (2013); T. Duric et al., arXiv:1401.5680

Instead of QAH: partial CDW

- CDW driven by V_{2} does not 'fit' with half filling
- Frustrated on triangular sublattice
- Mean-field: More charge in one sublattice A. G. Grushin et al., PRB 87, 085136 (2013)
- ED: No signature of charge imbalance
- Weird: One-particle gap given by t, not V_{2} (or V_{1})

Partial CDW related to 'pinball liquid'

- 'pinball liquid' known from triangular lattice: CDW + metal/superconductor C. Hotta \& N. Furukawa, PRB 74, 193107 (2006).
- Fermionic analogue to supersolid: CDW + superfluid M. Boninsegni \& N. Prokof'ev, PRL 95, 237204 (2005); S. Wessel \& M. Troyer, PRL 95, 127205 (2005).
- Here: Two sublattices
(a)

- Black sites account for $2 / 3$ of electrons, remaining can be distributed in any way on + sites
- Weird properties, topological order?

Another route: Non-coplanar spin patterns

- Spin has to realign itself from site to site:

$$
t_{i j}=\left(\cos \frac{\theta_{i}}{2} \cos \frac{\theta_{j}}{2}+\sin \frac{\theta_{i}}{2} \sin \frac{\theta_{j}}{2} \mathrm{e}^{-i\left(\phi_{i}-\phi_{j}\right)}\right) t
$$

- Triangular Kondo-lattice model

I. Martin and C. D. Batista, PRL 101, 156402 (2008)
- Checkerboard Kondo-lattice model

J. W. F. Venderbos, M. Daghofer, J. van den Brink, S.

Kumar, PRL 109,
166405 (2012)

Hubbard model

- Classical Kondo-lattice model = mean field for Hubbard
- Non-coplanar Ground state at van-Hove?
I. Martin \& C. D. Batista, PRL 101, 156402 (2008); R. Nandkishore et al., PRL 108, 227204 (2012); R. Nandkishore et al., Nat. Phys. 8, 158 (2012); G.-W. Chern \& C. D. Batista, PRL 109, 156801 (2012).
- Finite T : coplanar
G.-W. Chern \& C. D. Batista, PRL 109, 156801 (2012)
- (also: $d+i d$ SC at small U)
- Large U, Variational Cluster Approach: Quantum fluctuations prefer collinear order
A. Fischer \& M. Daghofer, in preparation
- classical spin/mean field better justified in multi-orbital model

d orbitals in octahedral coordination

d orbitals in octahedral coordination

d orbitals in octahedral coordination

February 26, 2015

Mean-field bands in cylinder

- Low-lying e_{g}^{\prime} electrons: "localized" spin
- $a_{1 g}$ levels around μ : itinerant electrons
J. W. F. Venderbos, S. Kourtis, J. van den Brink, M. Daghofer, PRL 108, 126405 (2012), S. Kourtis, J. W. F. Venderbos, M. Daghofer, PRB 86, 235118 (2012)
- Similar situation to Kondo-lattice model
I. Martin and C. D. Batista, PRL 101, 156402 (2008); Y. Akagi and Y. Motome, JPSJ 79, 083711 (2010); Y. Kato et al., PRL 105, 266405 (2010)

Add inter-site Coulomb repulsion

Insert magnetic flux:

$$
t_{\mathbf{i}, \mathbf{j}} \rightarrow t_{\mathbf{i}, \mathbf{j}} \mathrm{e}^{i\left(\phi_{x} \frac{j_{x}-i_{x}}{L_{x}}+\phi_{y} \frac{j_{y}-i_{y}}{L_{y}}\right)}
$$

J. W. F. Venderbos, S. Kourtis, J. van den Brink, M. Daghofer, PRL 108, 126405 (2012); S. Kourtis, J. W. F. Venderbos, M. Daghofer, PRB 86, 235118 (2012)

Add inter-site Coulomb repulsion

Insert magnetic flux:

$$
t_{\mathbf{i}, \mathbf{j}} \rightarrow t_{\mathbf{i}, \mathbf{j}} \mathrm{e}^{i\left(\phi_{x} \frac{j_{x}-i_{x}}{L_{x}}+\phi_{y} \frac{j_{y}-i_{y}}{L_{y}}\right)}
$$

J. W. F. Venderbos, S. Kourtis, J. van den Brink, M. Daghofer, PRL 108, 126405
(2012); S. Kourtis, J. W. F. Venderbos, M. Daghofer, PRB 86, 235118 (2012)

Add inter-site Coulomb repulsion

Insert magnetic flux:

$$
t_{\mathbf{i}, \mathbf{j}} \rightarrow t_{\mathbf{i}, \mathbf{j}} \mathrm{e}^{i\left(\phi_{x} \frac{j_{x}-i_{x}}{L_{x}}+\phi_{y} \frac{j_{y}-i_{y}}{L_{y}}\right)}
$$

J. W. F. Venderbos, S. Kourtis, J. van den Brink, M. Daghofer, PRL 108, 126405 (2012); S. Kourtis, J. W. F. Venderbos, M. Daghofer, PRB 86, 235118 (2012)

Level Statistics for one added hole

Add one hole to FQH/FCI state on torus: certain number of states expected below gap
B. A. Bernevig and N. Regnault, PRB 85, 075128 (2012); S. Kourtis, J. W. F. Venderbos, M. Daghofer, PRB 86, 235118 (2012)

Hall Conductivity

$$
\begin{aligned}
\Omega^{n}\left(\phi_{x}, \phi_{y}\right)= & i L_{x} L_{y} \sum_{n^{\prime} \neq n} \frac{\langle n| \frac{\partial H_{\mathrm{eff}}\left(\phi_{x}, \phi_{y}\right)}{\partial \phi_{x}}\left|n^{\prime}\right\rangle\left\langle n^{\prime}\right| \frac{\partial H_{\mathrm{eff}}\left(\phi_{x}, \phi_{y}\right)}{\partial \phi_{y}}|n\rangle}{\left(\epsilon_{n}-\epsilon_{n^{\prime}}\right)^{2}} \\
& -(x \leftrightarrow y)
\end{aligned}
$$

Similar for $\nu=2 / 3,1 / 5,2 / 5, \ldots$ and other models.

How flat is flat enough?

Parametrize band flatness:

February 26, 2015

How flat is flat enough?

Parametrize band flatness:

How flat is flat enough?

Parametrize band flatness:

February 26, 2015

Impact of band flattness: $\nu=1 / 3$

Very flat always good, interaction \gtrsim band gap is OK

- $\nu=1 / 3$ (band with $C=1$) $\Rightarrow \bar{n}=1 / 6$ (lattice)
- For NN interactions: No state competes with FCI
- Very flat bands make FCI easier
- Not so flat bands: stronger interaction still induces FCl S. Kourtis et al., PRL 112, 126806 (2014)
S. Kourtis, J. W. F. Venderbos, M. Daghofer, PRB 86, 235118 (2012)

Change filling: Competition with CDW

- $\bar{n}=1 / 3(\nu=2 / 3)$: CDW easy
- $\bar{n}=1 / 6(\nu=1 / 3):$ no easy CDW

- Nesting does not favor CDW for $t^{\prime}>0.2$
- Very flat bands: FCl
- Nesting: CDW

Where do FCls differ from FQH states?

- Flexibility: Chern number, spin degree of freedom, ...
- No particle-hole symmetry (see $1 / 3$ vs. $2 / 3$)
A. G. Grushin, T. Neupert, C. Chamon, C. Mudry, PRB 86, 205125 (2012);
A. M. Läuchli, Z. Liu, E. J. Bergholtz, R. Moessner, PRL 111, 126802
(2013); S. Kourtis, J. W. F. Venderbos, M. Daghofer, PRB 86, 235118
(2012)
- Role of the lattice?
- Mostly a nuisance
- Argued away after providing nontrivial bands
- In fact, mostly only one Chern band is kept: band topology remains, band dispersion maybe, lattice is lost
- Lattice was responsible for CDW

Coexistence of (Landau) charge and topological order
triangular lattice, $\bar{n}=12 / 30$

FCl for $\nu=4 / 5$?

Coexistence of (Landau) charge and topological order

triangular lattice, $\bar{n}=12 / 30$

FCl for $\nu=4 / 5$?
15 states instead of $5!\sigma_{x y}=2 / 5$

Signatures of $\nu=2 / 5 \mathrm{FCI}$ and CDW

CDW with $\mathbf{q}=K$

- Charge-structure factor $N(\mathbf{q})$ peaked at K
- Peaks grow with V

Charge order + fractional $\sigma_{x y}$

- CDW on $1 / 3$ of the sites
- remaining system: 4 subbands
- lowest band filled to $2 / 5 \Rightarrow \mathrm{FCl}$ with $\nu=2 / 5$
- Also found for other fillings
- Quite robust: not sensitive to t_{3} (band dispersion)

Comments on Stability

■ Phase separation vs. "mixed phase":

- ED for small systems: No PS
- "Non-topological" analogue known (DMRG) C. Hotta \& N. Furukawa, PRB 74, 193107 (2006); S. Nishimoto \& C. Hotta, PRB 79, 195124 (2009)
- Bosonic equivalent: supersolid M. Boninsegni \& N. Prokof'ev, PRL 95, 237204 (2005); S. Wessel \& M. Troyer, PRL 95, 127205 (2005).
- Topological order for given CDW

- large- V limit: prune Hilbert space, somewhat larger systems possible:
- 14 fermions on 6×6 sites
- 16 fermions on 90 sites (resp. 6 on 60)

Topological pinball liquid

- strong interaction: $C= \pm 1$ bands mixed
- Supported by frustrated lattice
- Lattice-specific features beyond FQH states
- Analogous to supersolid: CDW + superfluid M. Boninsegni \& N. Prokof'ev, PRL 95, 237204 (2005); S. Wessel \& M. Troyer, PRL 95, 127205 (2005).
- Fermionic counterpart "pinball liquid": CDW + metal/superconductor C. Hotta \& N. Furukawa, PRB 74, 193107 (2006).
- Here: CDW + topological order

Advertising break!!!!!

PhD and Postdoc position available

at Institute for Functional Matter and Quantum Technologies, University of Stuttgart

Universität Stuttgart

ED-based approaches to topological states

- (Variational) Cluster-perturbation theory: "combined ED and mean-field embedding"
- Spinless fermions on honeycomb: charge fluctuations kill QAH state
- Hubbard model on triangular lattice: quantum fluctuations prefer collinear spins (with topo. trivial bands)
- Kondo-lattice model:
- Electron-spin coupling can induce topological band character
- Orbital degree of freedom can reduce band dispersion \Rightarrow interactions more important
- ED for FCls
- eigenenergies + fully interacting $\sigma_{x y}$
- Beyond FQH physics: "topological pinball liquid", CDW + topological order (like supersolid, but with topo. order instead of superfluid)

