Matrix product state formulation of frequency-space dynamics at finite temperatures

Salvatore R. Manmana
Institute for Theoretical Physics, Göttingen University

Alexander C. Tiegel, Salvatore R. Manmana, Thomas Pruschke, and Andreas Honecker,
Numerics for Correlated Systems in Göttingen: Talk to these people

I.) Matrix Product States: Alexander Tiegel ➔ Poster P10 Thomas Köhler ➔ Poster P14

II.) VCA/CPT for spin systems: Benjamin Lenz ➔ Poster P9

III.) QMC/Dual Fermions: René Kerkdyk ➔ Talk F7 (Tomorrow) Patrick Haase ➔ Poster P4

Funding:

FOR1807 “Advanced Computational Methods for strongly correlated quantum systems”
SFB/CRC 1073 “Atomic Scale Control of Energy Conversion”
Helmholtz Virtual Institute “New states of matter and their excitations”
Dynamical correlation functions:

DMRG approach for \(T > 0 \)?

Main question of this talk:

Direct computation of dynamical spectral functions via DMRG at \(T > 0 \)?

\[
G_A(k, \omega) = -\frac{1}{\pi} \text{Im} \left\langle \Psi_T \left| A^\dagger \frac{1}{z-L} A \right| \Psi_T \right\rangle
\]

\[L = \mathcal{H}_P \otimes I_Q - I_P \otimes \mathcal{H}_Q\]

- here: proof of principle results (no optimized code)
- flexibility of approaches to resolvent
- *high* resolution, small errors
- works at all frequencies
- no further input needed (e.g. linear prediction)
Excitations in Quantum Many-Body Systems: Dynamical Spectral Functions

angle-resolved photoemission (ARPES)
scanning-tunneling spectroscopy

Linear response: measure quantities of type:

$$C_{B^+,A}(\omega) \equiv \sum_n \langle \Psi_0 | B | n \rangle \langle n | A | \Psi_0 \rangle \delta(\omega - (E_n - E_0))$$

insights into (local) density of states, excitations of the system, structure factors
Dynamical spectral functions: finite temperatures

Materials (neutron scattering):

KCuF$_3$: 1D Heisenberg chain,
J =34 meV≈250K

Optical lattices (QMC prediction) :
SU(N) Hubbard systems

[B. Lake et al., Nat. Mat. 4 (2005) 329]

[L. Bonnes et al., PRL 109, 205305 (2012)]
Dynamical spectral functions: Cluster Perturbation Theory for Spins

\[G^{-1} = G_0^{-1} - V \]
\[G_{CPT}(k, \omega) = \frac{1}{L} \sum_{i,j=1}^{L} G_{ij}(Q, \omega)e^{-ik(r_i-r_j)} \]
\[\mathcal{H} = -J \sum_i \left(\frac{1}{2}(S_i^+S_{i+1}^- + S_i^-S_{i+1}^+) + S_i^zS_{i+1}^z \right) \]

1D Heisenberg model

Bethe ansatz (L=400)

CPT (L=20)

Klauser et al. (2011)
Dynamical correlation functions:

$\mathcal{T} = 0$ vs. $\mathcal{T} > 0$

Dynamical correlation functions at $T = 0$:

$$G_A(\omega) = -\frac{1}{\pi} \text{Im} \left\langle \psi_0 \left| A^\dagger \frac{1}{\omega + E_0 + i\varepsilon} A \right| \psi_0 \right\rangle = \sum_n |\langle n | A | \psi_0 \rangle|^2 \delta(\omega - (E_n - E_0))$$

$$\mathcal{H}_0 |n\rangle = E_n |n\rangle$$

Dynamical correlation functions at $T > 0$:

$$G_A(\omega, T) = \frac{1}{Z} \sum_{n,m} e^{-\beta E_m} \langle m | A | n \rangle \langle n | A | m \rangle \delta(\omega - (E_n - E_m))$$

⚠️ Need the full spectrum...difficult 😞

Ways out: continued fraction expansion, (D)DMRG, QMC,...

Here: DMRG+continued fraction/Chebyshev expansions
Finite temperature methods: purification with matrix product states

Compute thermal density matrix via a pure state in an extended system:

\[| \Psi_T \rangle \sim e^{-(H_P \otimes I_Q)/(2T)} \left[\bigotimes_{j=1}^{L} | \text{rung - singlet} \rangle \right] \]

\[\Rightarrow \varrho_T = e^{-H/T} = \text{Tr}_Q | \Psi_T \rangle \langle \Psi_T | \]

Real time evolution at finite temperature:

\[| \Psi_T \rangle (t) = e^{-i(H_P \otimes U_Q)t} | \Psi_T \rangle \Rightarrow G_A(T, t) \overset{\text{Fourier}}{\Rightarrow} G_A(T, \omega) \]

○ Problem: reach long times for large systems
○ Ways out: linear prediction, backward time evolution in Q

[U. Schollwöck, Annals of Physics (2011)]

Dynamical correlation functions at finite T: Liouvillian formulation

$$G_A(\omega, T) = \frac{1}{Z} \sum_{n,m} e^{-\beta E_m} \langle m | A | n \rangle \langle n | A | m \rangle \delta(\omega - (E_n - E_m))$$

Note: 1) Difference of all energies
2) MPS approach: $|\Psi_T\rangle$ vector in the Liouville space spanned by $\mathcal{H}_P \otimes \mathcal{H}_Q$

Dynamics is actually governed by Liouville equation [Barnett, Dalton (1987)]

$$\frac{\partial}{\partial t} |\Psi_T\rangle = -i\mathcal{L} |\Psi_T\rangle, \quad \mathcal{L} = \mathcal{H}_P \otimes I_Q - I_P \otimes \mathcal{H}_Q$$

(backward evolution in Q by Karrasch et al.)

$$G_A(k, \omega) = -\frac{1}{\pi} \text{Im} \left\langle \Psi_T \left| A^\dagger \frac{1}{z - \mathcal{L}} A \right| \Psi_T \right\rangle$$

[A.C. Tiegel et al., arXiv:1312.6044 : proof of principle calculations]
Earlier: Superoperator approach to mixed-state dynamics [Zwolak & Vidal (2004)]
Liouville space formalism: “Thermofields”

Liouville space description of thermofields and their generalisations

S M Barnett† and B J Dalton‡‡

† Optics Section, Blackett Laboratory, Imperial College of Science and Technology, London SW7 2BZ, UK
‡ Physics Department, University of Queensland, St Lucia, Queensland, Australia 4067

Received 14 January 1986, in final form 13 May 1986

Abstract. The thermofield representation of a thermal state by a pure-state wavefunction in a doubled Hilbert space is generalised to arbitrary mixed and pure states. We employ a Liouville space formalism to investigate the connection between these generalised thermofield wavefunctions and a generalised thermofield state vector in Liouville space which is valid for all cases of the quantum density operator. The system dynamics in the Schrödinger and Heisenberg pictures are discussed.

+ references therein

\[i \frac{d \varrho}{dt} = \left[\hat{H}, \varrho \right] \Rightarrow i \frac{d}{dt} | \varrho \rangle \rangle = \mathcal{L} | \varrho \rangle \rangle \]

von Neumann equation

Liouville equation
Dynamical correlation functions: Lanczos recursion.

Use continued fraction expansion (CFE)

\[G_A(z) = -\frac{1}{\pi} \text{Im} \left\langle \psi_0 \left| A^\dag \frac{1}{z-L} A \right| \psi_0 \right\rangle = -\frac{1}{\pi} \text{Im} \frac{\left\langle \Psi_0 \left| A^\dag A \right| \Psi_0 \right\rangle}{z-a_0 - \frac{b_1^2}{z-a_1 - \frac{b_2^2}{z-\cdots}}} \]

Via Lanczos recursion

\[|f_0\rangle = A |\Psi_0\rangle, \quad |f_{n+1}\rangle = L |f_n\rangle - a_n |f_n\rangle - b_n^2 |f_{n-1}\rangle \]

\[a_n = \frac{\left\langle f_n | L | f_n \right\rangle}{\left\langle f_n | f_n \right\rangle}, \quad b_{n+1}^2 = \frac{\left\langle f_{n+1} | f_{n+1} \right\rangle}{\left\langle f_n | f_n \right\rangle}, \quad b_0 = 0 \]
Dynamical correlation functions:
Chebyshev recursion

Representation via Chebyshev polynomials:

\[G_A(\omega) = \frac{2}{\pi W \sqrt{1 - \omega'^2}} \left[g_0 \mu_0 + 2 \sum_{n=1}^{N-1} g_n \mu_n T_n(\omega') \right] \]

with

\[\mu_n = \langle t_0 | t_n \rangle = \langle \Psi_T | A^\dagger T_n(\mathcal{L}') A | \Psi_T \rangle \]

\[|t_0\rangle = A |\Psi_T\rangle, \quad |t_1\rangle = \mathcal{L}' |t_0\rangle, \quad |t_n\rangle = 2\mathcal{L}' |t_{n-1}\rangle - |t_{n-2}\rangle \]

\[W : \text{bandwidth of } \mathcal{L} \]

\[\mathcal{L}' : \text{rescaled Liouvillian, so that } W \to [-1, 1] \]

\[\omega' \in [-1, 1], \quad T_n(\omega') = \cos[n \left(\arccos \omega' \right)] \]

\[g_n : \text{damping factors } \to \text{ Gaussian broadening } \eta \sim 1/N \]

\[g_n^J = \frac{(N - n + 1) \cos \frac{\pi n}{N+1} + \sin \frac{\pi n}{N+1} \cot \frac{\pi}{N+1}}{N + 1} \]

“Jackson damping”

[MPS: A. Holzner et al., PRB 83, 195115 (2011); A. Weiße et al., RMP 78, 275 (2006)]
Effective Models for Quantum Magnets

Starting point: Hubbard model

\[H = -t \sum_{\langle ij \rangle, \sigma} \left[c_{i+1, \sigma}^\dagger c_{i, \sigma} + h.c. \right] + U \sum_i n_{i, \uparrow} n_{i, \downarrow} \]

Heisenberg exchange: 2nd order perturbation theory for \(U >> t \)

\[J \vec{S}_1 \cdot \vec{S}_2 \quad J = \frac{4t^2}{U} \]

Real materials: additional spin-orbit coupling

\[\sim \lambda \vec{L} \cdot \vec{S} \quad \lambda \ll 1 \quad \vec{D} \cdot \left(\vec{S}_1 \times \vec{S}_2 \right) \quad |\vec{D}| \sim \lambda \]

- Heisenberg term symmetric under permutations, SU(2) invariant
- Dzialoshinskii-Moriya-Term antisymmetric, breaks SU(2) invariance
- Typically \(D \sim 1 - 10\% J \)

Here: interplay of \(D, J \) and \(T \) in dynamical quantities
Dynamical properties of quantum magnets: ESR on Cu-PM in magnetic fields

Copper pyrimidine dinatrate: [S. Zvyagin et al., PRB(R) (2011)]

(Quasi-)1D Heisenberg AFM, described by

\[\mathcal{H} = \sum_j [JS_j \cdot S_{j+1} - HS_j^z - h (-1)^j S_j^z] \]

effect of staggered g-tensor + DM interaction

ESR spectrum in magnetic field:

DMRG results
Spectral functions at finite field

Finite-T dynamics in strong magnetic fields:
small H: spinons

large H: magnons

Time evolution at $T=0.2$ + Fourier transform
(non-optimized code, no linear prediction)

Time evolution approaches: linear prediction

[T. Barthel, U. Schollwöck & S.R. White, PRB (2009)]

real time behavior: linear prediction

Fourier space:
Time evolution approaches: linear prediction

Comparison to experiments: KCuF$_3$

[B. Lake et al., PRL (2013)]
Exact results for analytically solvable XX-model:
Time evolution approaches: linear prediction

Time evolution with MPS:

Difference to linear prediction from $t=2$

Difference to linear prediction from $t=4$
Work directly in frequency space: Liouvillian finite-\(T\) approach.

Proof of Principle Calculations!
Liouvillian finite-T approach: comparison to exact results

Continued fraction expansion:

$$H_{XX} = J \sum_{i}^{L-1} (S^x_i S^x_{i+1} + S^y_i S^y_{i+1})$$

$$S^\alpha_k = \sqrt{\frac{2}{L+1}} \sum_{i=1}^{L} \sin(k i) S^\alpha_i$$

Excellent agreement with exact results!
Liouvillian finite-\(T\) approach:

Heisenberg antiferromagnet in magnetic field

Chebyshev approach:

no DM

‘Melting’ of a Luttinger liquid

with DM

Formation of bands, thermal broadening

\[
\begin{align*}
T &= 0 \\
T &= 0.5 \\
T &= 1
\end{align*}
\]

\[
\begin{align*}
\hbar x &= 0 \\
\hbar x &= 0.3
\end{align*}
\]
Conclusions

Go to Liouville space and work directly in frequency space:

\[G_A(k, \omega) = -\frac{1}{\pi} \text{Im} \left\langle \Psi_T \left| A^\dagger \frac{1}{\omega - \mathcal{L}} A \right| \Psi_T \right\rangle \quad \mathcal{L} = H_P \otimes I_Q - I_P \otimes H_Q \]

Independent of method: also possible to use PEPS, further tensor networks, other numerical approaches (ED, DMFT impurity solver, ...?)

Heisenberg chain with Dzyaloshinskii-Moriya interaction:

very accurate
observe “melting” of LL,
formation of bands via DM interaction

Next steps: optimize code,
ESR lines,
other systems (S>1/2, fermions, bosons)