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Tensor Networks 
Entanglement-based approach
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Matrix Product State (MPS)
Efficient Representation



Tensor Networks 
Entanglement-based approach

Hilbert Space

H ~ VN

low entanglement 
corner

S(A) ~ A
Area law growth for 

entanglement entropy

Exponential growth



Jordan, Orus, Vidal, Verstraete, Cirac, PRL (2008)
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iPEPS
• infinite Projected Entangled-Pair States

• Define arbitrary structure and size of unit cell.

• Include effect of infinite system via so-called environment tensors.

dimension D

Typically perform ground state search 
using imaginary-time evolution.

(Full Update)

exp(-τH)



Contracting the network

PEPS contraction
Cost ~ Exp(N)

Approximations 
Required!
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Nishino, Okunishi, JPSJ65 (1996)  
Orus, Vidal, PRB 80 (2009)Corner Transfer Matrix (CTM)

C(D,χ) ~ χ3D4



• Proposed by Chaloupka et al. as effective model for 
(layered) Iridate compounds A2IrO3 (A = Li,Na).

• Nearest-neighbor (pseudo-)spin interactions 
composed of isotropic Heisenberg + anisotropic 
Kitaev terms.

• Small system studies show that (zigzag) magnetic 
order found in Iridate compounds is natural 
ground state of KH model.
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Kitaev-Heisenberg model
The Hamiltonian
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the lattice contains one vertex of each kind. Links are divided into three types, depending
on their direction (see Fig. 3B); we call them ‘‘x-links,’’ ‘‘y-links,’’ and ‘‘z-links.’’ The
Hamiltonian is as follows:

H ¼ "Jx

X

x-links
rx
jr

x
k " Jy

X

y-links
ry
jr

y
k " J z

X

z-links
rz
jr

z
k; ð4Þ

where Jx, Jy, and Jz are model parameters.

Table 2
Properties of anyons for m ” 2 (mod 4)
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Hamiltonian/Phase Diagram A. Kitaev, Annals of Physics 321 (2006).

Kitaev’s Honeycomb model

is impossible, even if we introduce new terms in the Hamiltonian. On the other hand, the
eight copies of each phase (corresponding to different sign combinations of Jx,Jy,Jz) have
the same translational properties. It is unknown whether the eight copies of the gapless
phase are algebraically different.

We now consider the zeros of the spectrum that exist in the gapless phase. The momen-
tum q is defined modulo the reciprocal lattice, i.e., it belongs to a torus. We represent the
momentum space by the parallelogram spanned by (q1,q2)—the basis dual to (n1,n2). In
the symmetric case (Jx = Jy = Jz) the zeros of the spectrum are given by

ð34Þ

If |Jx| and |Jy| decrease while |Jz| remains constant, q* and #q* move toward each other
(within the parallelogram) until they fuse and disappear. This happens when
|Jx| + |Jy| = |Jz|. The points q* and #q* can also effectively fuse at opposite sides of the par-
allelogram. (Note that the equation q* = #q* has three nonzero solutions on the torus.)

At the points ±q* the spectrum has conic singularities (assuming that q* „ #q*)

ð35Þ

7. Properties of the gapped phases

In a gapped phase, spin correlations decay exponentially with distance, therefore spa-
tially separated quasiparticles cannot interact directly. That is, a small displacement or
another local action on one particle does not influence the other. However, the particles

Jx Jz= =0Jy Jz= =0

=1,Jx =1,Jy

=1,Jz Jx Jy= =0

gapless

gappedAz

Ax Ay

B

Fig. 5. Phase diagram of the model. The triangle is the section of the positive octant (Jx, Jy, Jz P 0) by the plane
Jx + Jy + Jz = 1. The diagrams for the other octants are similar.
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The most interesting choice of ujk is the one that minimizes the ground state energy. It
turns out that the energy minimum is achieved by the vortex-free field configuration, i.e.,
wp = 1 for all plaquettes p. This statement follows from a beautiful theorem proved by
Lieb [50]. (Not knowing about Lieb!s result, I did some numerical study suggesting the
same answer, see Appendix A.) Thus, we may assume that ujk = 1 for all links (j,k), where
j belongs to the even sublattice, and k belongs to the odd sublattice. This field configura-
tion (denoted by ustdjk ) possesses a translational symmetry, therefore the fermionic spectrum
can be found analytically using the Fourier transform.

The general procedure is as follows. Let us represent the site index j as (s,k), where s
refers to a unit cell, and k to a position type inside the cell (we choose the unit cell as shown
in the figure accompanying Eq. (32)). The Hamiltonian becomes
H ¼ ði=4Þ

P
s;k;t;lAsk;tlcskctl, where Ask, tl actually depends on k, l, and t $ s. Then we pass

to the momentum representation:

H ¼ 1
2

X

q;k;l

ieAklðqÞa$q;kaq;l; eAklðqÞ ¼
X

t

eiðq;rtÞA0k;tl; ð29Þ

aq;k ¼
1ffiffiffiffiffiffiffi
2N

p
X

s

e$iðq;rsÞcsk; ð30Þ

where N is the total number of the unit cells. (Here and on, operators in the momentum
representation are marked with tilde.) Note that ayq;k ¼ a$q;k and
ap;la

y
q;k þ ayq;kap;l ¼ dpqdlk. The spectrum e (q) is given by the eigenvalues of the matrix

ieAðqÞ. One may call it a ‘‘double spectrum’’ because of its redundancy: e ($q) = $e ($q).
The ‘‘single spectrum’’ can be obtained by taking only positive eigenvalues (if none of the
eigenvalues is zero).

We now apply this procedure to the concrete Hamiltonian

H vortex-free ¼
i

4

X

j;k

Ajkcjck; Ajk ¼ 2J ajk u
std
jk . ð31Þ

We choose a basis (n1,n2) of the translation group and obtain the following result:

ð32Þ

where n1 ¼ ð12 ;
ffiffi
3

p

2 Þ, n2 ¼ ð$ 1
2 ;
ffiffi
3

p

2 Þ in the standard xy-coordinates.
An important property of the spectrum is whether it is gapless, i.e., whether e (q) is zero

for some q. The equation Jxe
i(q, n1) + Jye

i(q, n2) + Jz = 0 has solutions if and only if |Jx|, |Jy|,
|Jz| satisfy the triangle inequalities

jJxj 6 jJy jþ jJzj; jJy j 6 jJxjþ jJ zj; jJ zj 6 jJxjþ jJy j. ð33Þ

If the inequalities are strict (‘‘<’’ instead of ‘‘6’’), there are exactly 2 solutions: q = ±q*.
The region defined by inequalities (33) is marked by B in Fig. 5; this phase is gapless.
The gapped phases, Ax, Ay, and Az, are algebraically distinct, though related to each other
by rotational symmetry. They differ in the way lattice translations act on anyonic states
(see Section 7.2). Therefore a continuous transition from one gapped phase to another
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We expect iPEPS to perform 
well inside gapped (A phase) 

region. What about the gapless 
region?Gapless region 

defined by: Perfect benchmark.

Gapless (B) phase hosts non-
abelian anyonic excitations.

Gapped (A) phase can be 
mapped to the toric code.



•Isotropic Jx=Jy=Jz point (B-phase).
•Exact energy per site: -0.3936.
•iPEPS energy: 

•D=7 (AFM): -0.3933
•D=7 (FM): -0.3931

•Monotonic decrease with D.
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HbL •Spin liquid ground state > Zero 
magnetization expected.
•iPEPS results: 

•D=7 (AFM): 0.01
•D=7 (FM): 0.02

•Monotonic decrease with D.
•Infinite D extrapolation yields 
vanishing magnetization.

Energy/Magnetization

A. Kitaev, Annals of Physics 321 (2006).
G.Baskaran, S.Mandal, R. Shankar, PRL 98 (2007).
JOI, P. Corboz, M. Troyer, arXiv:1408.4020.

Kitaev’s Honeycomb model



Spin-Spin Correlations

G.Baskaran, S.Mandal, R. Shankar, PRL 98 (2007).
JOI, P. Corboz, M. Troyer, arXiv:1408.4020.

•Results from Baskaran et al. 
show that only NN correlations 
of corresponding bond type are 
non-vanishing, eg.

•Data not shown < 10-3.
•Systematic improvement upon 
increasing bond dimension.
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• Type of transition 
observed in 4th quadrant 
differed for small systems 
vs SP Mean-Field study.

• Survival of QSL phases in 
TD limit remained under 
debate.

• Type of phase transitions 
from AQSL to symmetry 
broken not certain.

J. Chaloupka, G. Jackeli, G. Khaliullin, PRL 110 (2013).
J. Chaloupka, G. Jackeli, G. Khaliullin, arXiv:1004.2964v2.
R. Schaer, S. Bhattacharjee, and Y. B. Kim, Phys. Rev. B 86, 224417 (2012).
Jiang et al., arXiv:1101.1145v1.
Z. Wang, C. Li, Y. Han, and G. Guo, arXiv:1303.2431 (2013)

Kitaev-Heisenberg model
Previous Results
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iPEPS Approach
Energy crossing + OP analysis 

•Perform initial runs 
mapping out phases arising 
in phase diagram.
•Find representative states 
deep inside each phase.
•Compare energies + OP 
of different phases in the 
vicinity of phase 
transitions.
•“Hysteretic” behavior will 
hint towards 1st order 
type transitions.

Kitaev-Heisenberg model
JOI, P. Corboz, M. Troyer, arXiv:1408.4020.

Image from J. Chaloupka, G. Jackeli, G. Khaliullin, PRL 110 (2013). 



Spin Liquid to Stripy Transition
Energy Crossings

•Weak energy crossing 
at φ ~ -80° (D=6) 
suggests 1st order 
phase transition.
•Transition point shifts 
towards lower φ with 
increasing D.

Kitaev-Heisenberg model
JOI, P. Corboz, M. Troyer, arXiv:1408.4020.

Ê
Ê

Ê

Ê
Ê

Ê
Ê

Ê
Ê

Ê
Ê

Ê
Ê

Ê

Ê

Ê

Ê

Ê

‡

‡

‡
‡

‡
‡

‡
‡

‡
‡

‡
‡

‡

‡

‡

‡

‡

‡

-90 -85 -80 -75 -70
-0.40

-0.35

-0.30

-0.25

f @degD

E s
ite

Ê Ê Ê Ê Ê ÊÊÊÊÊÊ

Ê Ê
Ê Ê

Ê
Ê

Ê
Ê Ê

-90 -85 -80 -75 -70
0.0

0.1

0.2

0.3

0.4

f @degD

D
E B

on
d

‡ Spin Liquid HD=6 - c=51LÊ Stripy Ordered HD=6 - c=51L



Spin Liquid to Stripy Transition
Magnetic Order Parameters

Kitaev-Heisenberg model
JOI, P. Corboz, M. Troyer, arXiv:1408.4020.
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•Discontinuous behavior for 
Magnetization/Stripy order 
parameters in GS (red 
diamonds/cyan circles).
•Green/blue data show OP 
values for each of the phases. 
•Discontinuity expected to 
remain finite in infinite D 
limit. 



Spin Liquid to Stripy Transition

Bond Order Parameter

Kitaev-Heisenberg model
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JOI, P. Corboz, M. Troyer, arXiv:1408.4020.
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Kitaev-Heisenberg model
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FM Spin Liquid to Symmetry-broken



Kitaev-Heisenberg model
AFM Spin liquid to symmetry broken
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Kitaev-Heisenberg model
Summary
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