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Quenches in Bose-Fermi mixtures
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Quantum quench
If the initial state is not an eigenstate of Ĥ

|ψ0〉 6= |α〉 where Ĥ|α〉 = Eα|α〉 and E0 = 〈ψ0|Ĥ|ψ0〉,

then a few-body observable O will evolve following

O(τ) ≡ 〈ψ(τ)|Ô|ψ(τ)〉 where |ψ(τ)〉 = e−iĤτ/~|ψ0〉.

What is it that we call thermalization?

O(τ) = O(E0) = O(T ) = O(T, µ).

One can write

O(τ) =
∑
α′,α

C?α′Cαe
i(Eα′−Eα )τ/~Oα′α where |ψ0〉 =

∑
α

Cα|α〉.

Taking the infinite time average (diagonal ensemble ρ̂DE ≡
∑
α |Cα|2|α〉〈α|)

O(τ) = lim
τ→∞

1

τ

∫ τ

0

dτ ′〈Ψ(τ ′)|Ô|Ψ(τ ′)〉 =
∑
α

|Cα|2Oαα ≡ 〈Ô〉DE,

which depends on the initial conditions through Cα = 〈α|ψ0〉.
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which depends on the initial conditions through Cα = 〈α|ψ0〉.

Marcos Rigol (Penn State) NLCEs for the diagonal ensemble February 23, 2015 4 / 26



Outline

1 Introduction
Quantum quench
Linked-cluster expansions, HTEs, and NLCEs

2 Quantum quenches in the thermodynamic limit
Diagonal ensemble and NLCEs
Quenches in the t-V -t′-V ′ chain (thermalization)
Quenches in XXZ chain from a Neel state (QA vs GGE)
Many-body localization

3 Conclusions

Marcos Rigol (Penn State) NLCEs for the diagonal ensemble February 23, 2015 5 / 26



Linked-Cluster Expansions

Extensive observables Ô per lattice site (O) in the thermodynamic limit

O =
∑
c

L(c)×WO(c)

where L(c) is the number of embeddings of cluster c

and WO(c) is the weight
of observable O in cluster c

WO(c) = O(c)−
∑
s⊂c

WO(s).

O(c) is the result for O in cluster c

O(c) = Tr
{
Ô ρ̂GC

c

}
,

ρ̂GC
c =

1

ZGC
c

exp−(Ĥc−µN̂c)/kBT

ZGC
c = Tr

{
exp−(Ĥc−µN̂c)/kBT

}
and the s sum runs over all subclusters of c.
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Linked-Cluster Expansions

In HTEs O(c) is expanded in powers of β and only a finite
number of terms is retained

In numerical linked cluster expansions (NLCEs) an exact diagonalization
of the cluster is used to calculate O(c) at any temperature
(Spins models in the square, triangular, and kagome lattices)
MR, T. Bryant, and R. R. P. Singh, PRL 97, 187202 (2006).
MR, T. Bryant, and R. R. P. Singh, PRE 75, 061118 (2007).
(t-J model in the square lattice)
MR, T. Bryant, and R. R. P. Singh, PRE 75, 061119 (2007).

Zero temperature NLCEs
(pinwheel distorted kagome lattice, material Rb2Cu3SnF12)
E. Khatami, R. R. P. Singh, and MR, PRB 84, 224411 (2011).

Bipartite entanglement entropy of quantum models
(two-dimensional transverse field Ising model)
A. B. Kallin, K. Hyatt, R. R. P. Singh, and R. G. Melko, PRL 110, 135702 (2013).

Disordered systems
(spin-1/2 models with binary disorder in 2D)
B. Tang, D. Iyer and MR, arXiv:1501.00990.
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Numerical Linked Cluster Expansions

i) Find all clusters that can be
embedded on the lattice

ii) Group the ones with the
same Hamiltonian (Topo-
logical cluster)

iii) Find all subclusters of a
given topological cluster

iv) Diagonalize the topological
clusters and compute the
observables

v) Compute the weight of each
cluster and compute the di-
rect sum of the weights

Bond clusters

c
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Numerical Linked-Cluster Expansions

Square clusters
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Numerical Linked-Cluster Expansions
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Resummation algorithms

We can define partial sums

On =

n∑
i=1

Si, with Si =
∑
ci

L(ci)×WO(ci)

where all clusters ci share a given characteristic (no. of bonds, sites, etc).
Goal: Estimate O = limn→∞On from a sequence {On}, with n = 1, . . . , N .

Wynn’s algorithm:

ε(−1)n = 0, ε(0)n = On, ε(k)n = ε
(k−2)
n+1 +

1

∆ε
(k−1)
n

where ∆ε
(k−1)
n = ε

(k−1)
n+1 − ε

(k−1)
n .

Brezinski’s algorithm [θ(−1)n = 0, θ
(0)
n = On]:

θ(2k+1)
n = θ(2k−1)n +

1

∆θ
(2k)
n

, θ(2k+2)
n = θ

(2k)
n+1 +

∆θ
(2k)
n+1∆θ

(2k+1)
n+1

∆2θ
(2k+1)
n

where ∆2θ
(k)
n = θ

(k)
n+2 − 2θ

(k)
n+1 + θ

(k)
n .
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Resummation results (Heisenberg model)

Energy (square lattice)
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MR, T. Bryant, and R. R. P. Singh, PRE 75, 061118 (2007).
B. Tang, E. Khatami, and MR, Comput. Phys. Commun. 184, 557 (2013).
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Diagonal ensemble and NLCEs
The initial state is in thermal equilibrium in contact with a reservoir

ρ̂Ic =

∑
a e
−(Eca−µIN

c
a)/TI |ac〉〈ac|

ZIc
, where ZIc =

∑
a

e−(E
c
a−µ

INca)/TI ,

|ac〉 (Eca) are the eigenstates (eigenvalues) of the initial Hamiltonian ĤI
c in c.

At the time of the quench ĤI
c → Ĥc , the system is detached from the

reservoir. Writing the eigenstates of ĤI
c in terms of the eigenstates of Ĥc

ρ̂DE
c ≡ limτ ′→∞

1

τ ′

∫ τ ′

0

dτ ρ̂(τ) =
∑
α

W c
α |αc〉〈αc|

where
W c
α =

∑
a e
−(Eca−µIN

c
a)/TI |〈αc|ac〉|2

ZIc
,

|αc〉 (εcα) are the eigenstates (eigenvalues) of the final Hamiltonian Ĥc in c.

Using ρ̂DE
c in the calculation of O(c), NLCEs allow one to compute

observables in the DE in the thermodynamic limit.

MR, PRL 112, 170601 (2014).
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c in terms of the eigenstates of Ĥc
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Models and quenches

Hard-core bosons in 1D lattices at half filling (µI = 0)

Ĥ =

L∑
i=1

−t
(
b̂†i b̂i+1 + H.c.

)
+ V n̂in̂i+1 − t′

(
b̂†i b̂i+2 + H.c.

)
+ V ′n̂in̂i+2

Quench: TI , tI = 0.5, VI = 1.5, t′I = V ′
I = 0→ t = V = 1.0, t′ = V ′
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Few-body experimental observables in the DE

Momentum distribution

m̂k =
1

L

∑
jj′

eik(j−j
′)ρ̂jj′
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Failure of the GGE based on local quantities
XXZ (integrable) Hamiltonian

Ĥ = J

(∑
i

σxi σ
x
i+1 + σyi σ

y
i+1 + ∆σzi σ

z
i+1

)

Quench starting from the Neel state to different values of ∆ ≥ 1

Quench action solution differs from GGE based on local quantities:
B. Wouters, J. De Nardis, M. Brockmann, D. Fioretto, MR, and J.-S. Caux,
PRL 113, 117202 (2014).
B. Pozsgay, M. Mestyán, M. A. Werner, M. Kormos, G. Zaránd, and G. Takács,
PRL 113, 117203 (2014).

Can we use NLCEs for ground states (pure states)?
Using the parity symmetry of the clusters:

|aec〉 =
1√
2

(| . . . ↑↓↑↓ . . .〉+ | . . . ↓↑↓↑ . . .〉)

|aoc〉 =
1√
2

(| . . . ↑↓↑↓ . . .〉 − | . . . ↓↑↓↑ . . .〉)

W c,e/o
α = |〈αe/oc |ae/oc 〉|2
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Results for spin-spin correlations
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Quench action, GGE, and NLCE
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NLCEs for disordered systems

Hamiltonian with diagonal disorder

Ĥ =
∑
i

[
−t(b̂†i b̂i+1 + H.c.) + V

(
n̂i −

1

2

)(
n̂i+1 −

1

2

)
+ hi

(
n̂i −

1

2

)]
binary disorder (equal probabilities for hi = ±h).

Disorder average restores translational invariance (exactly!)

O(c) =
〈

Tr[Ôρ̂c]
〉
dis
,

where 〈·〉dis represents the disorder average.

Initial state: tI = 0.5, VI = 2.5, hj = 0, and TI (no disorder)
Final Hamiltonian: t = 1, V = 2.0, and different values of h 6= 0

B. Tang, D. Iyer, and MR, arXiv:1411.0699.
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Disordered systems and many-body localization

Ratio of consecutive energy gaps
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Ratio of the smaller and the larger of two consecutive energy gaps

rn = min[δEn−1, δ
E
n ]/max[δEn−1, δ

E
n ], where δEn ≡ En+1 − En

we compute r = 〈〈rdisn 〉n〉dis.
Continuous disorder: hc ≈ 3.5 [A. Pal and D. A. Huse, PRB 82, 174411 (2010).]
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Scaling of the differences and errors
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Conclusions

NLCEs provide a general framework to study the diagonal en-
semble in lattice systems after a quantum quench in the thermo-
dynamic limit.

NLCE results suggest that few-body observables thermalize in
nonintegrable systems while they do not thermalize in integrable
systems. Time scale for thermalization as one approaches the
integrable point.

The GGE based on known local conserved quantities does not
describe observables after relaxation, while the QA does, as sug-
gested by the NLCE results. New things to be learned about in-
tegrable systems.

Quantum quenches and NLCEs can be used to study the transi-
tion between delocalization and many-body localization. Arbitrary
dimensions.
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