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Strongly Correlated Quantum Systems

Some Problems: Some Numerical methods:

• Quantum Monte Carlo 

• DMRG / Tensor Network 
Algorithms 

• Exact Diagonalization 

• …

from de.wikipedia.org

from www.nobelprize.org

• High temperature 
superconductivity 

• Frustrated magnetism / 
Quantum Spin Liquids

• Fractional Quantum Hall Effect 

• …

http://de.wikipedia.org
http://www.nobelprize.org


Method: 
Exact Diagonalization for  

Distributed Memory Machines



H | i = E | i
• Solution of Schrödinger Equation  
 

• Straightforward numerical method:   
a) Choose a Basis for the Hilbertspace  
b) Build up Hamiltonian Matrix  
c) Diagonalize it 

• eigenstates and spectra of the Hamiltonian can  
be analyzed 

• Typical exponential scaling  
of computational resources in  
system size 

• How can we go to larger system sizes?

Exact Diagonalization

D
~Si · ~Sj

E



Choosing a basis for the Hilbertspace:
Spin-1/2 models:

Hubbard-like models:

[0, 0, 1, 0]2

[01, 01, 00, 11]2

Example: 40 site Heisenberg Spin 1/2 n.n. model
dim (H) = 240 = 1099511627776

240 ⇥ 240Full Hamiltonian is  
' 40 · 240 ⇠= 351 TBSparse format:



Still such systems can be diagonalized!

• Often one is only interested in low 
lying eigenstates and energies of 
the Hamiltonian: 
Lanczos algorithm 

• uses only Matrix-Vector 
multiplications to produce a 
converging series of eigenvalues 
and eigenstates 

• the Matrix-Vector multiplication 
can be implemented without storing 
the Hamiltonian 

• only 2-4 so-called Lanczos vectors 
are needed. Same dimension 
as Hilbertspace



[H,S] = 0
• can be used to block diagonalize the 

Hamiltonian 

• space group symmetries, particle number 
conservation,  
spin-flip symmetry 

• gain further physical insight to the system 

• Calculations are done in a symmetrized 
basis 

• in order to compute fast and memory 
efficient in this basis so-called sublattice 
coding techniques are applied. 

• concepts by H.Q. Lin, Phys. Rev. B (1990) 
and A. Weiße, Phys. Rev. E. (2013) 

• extended these concepts for 3 and 4 sub 
lattices in two arbitrary dimension

Symmetries:



Parallelization:

• main part in the whole 
computation is the Matrix-Vector 
multiplication of the Hamiltonian 
with a Lanczos vector 

• this has to be parallelized 
efficiently 

• easy on shared-memory 
machines with OpenMP 

• for distributed-memory machines 
we split up the Lanczos vectors 
amongst the processes 

• Communication between the 
processes using MPI is necessary
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Parallelization:

• processes have to send other 
processes parts of the Lanczos 
vector 

• once once messages are received 
the new coefficients are added to 
the output vector 

• timing in this send-receive 
procedure is of paramount 
importance if we want our code to 
scale to large system sizes 

• randomly distributing the 
Hilbertspace among the 
processes and buffering the 
communication yields good results
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Benchmarks:
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Speedup factor
linear• performed on leo3 

(local university supercomputer) 

• 40 site Heisenberg nearest 
neighbor model on square 
lattice

Scaling:

Big system 1:
• Transverse field Ising model on 40 site 

Square lattice 

• Dimension of g.s. block: 3.436.321.976 

• 512 processes on VSC3 

• 2m 30s secs per Lanczos iteration
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Benchmarks:
Big system 2:

Big system 3:

• Heisenberg nearest neighbor model on a 48 site 
square lattice 

• Dimension of g.s. block: 83.986.162.605 

• 8192 processes on Vienna Scientific Cluster VSC3 

• 20m 40s per Lanczos iteration

• Heisenberg nearest neighbor model on a 48 
site Kagome lattice 

• Dimension of g.s. block: 83.979.009.353 

• 8192 processes on VSC3 

• 20m 10s per Lanczos iteration

• 10240 processes on RZG Hydra in 
Garching 

• 4m 15s per Lanczos iteration



Application: 
Identifying Spin Liquid 

Phases
A. Wietek, A. Sterdyniak, A. M. Läuchli, (in preparation)



Chiral Spin Liquids
• X.G. Wen, F. Wilczek, A. Zee, 

Phys.Rev. B 39, 17 (1989) proposed a 
class of states called Chiral Spin 
Liquid 

• break parity (reflection) and time 
reversal symmetry 

• Scalar Chirality                        as an 
order parameter for time-reversal 
symmetry 

• anyonic fractional excitations  
-> Spin Liquid 

• chiral edge states 

• historically first considered as a 
Laughlin wave function on a lattice

~S1 ·
⇣
~S2 ⇥ ~S3

⌘~S1 ·
⇣
~S2 ⇥ ~S3

⌘



H = J1
X

hi,ji

~Si · ~Sj + J2
X

hhi,jii

~Si · ~Sj + J3
X
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~Si · ~Sj

• S. Gong, W. Zhu & D. N. 
Sheng, Nature Scientific 
Reports 4, 6317 (2014) 
found a realistic model 
realizing a CSL groundstate 

• Heisenberg Model on the 
Kagome Lattice with up to 
third nearest neighbor  
interactions 
 
 
 
 
 



• S. Gong, W. Zhu & D. N. 
Sheng, Nature Scientific 
Reports 4, 6317 (2014) 
found a realistic model 
realizing a CSL groundstate 

• Heisenberg Model on the 
Kagome Lattice with up to 
third nearest neighbor  
interactions 
 
 
 

• CSL phase detected for 

H = J1
X

hi,ji

~Si · ~Sj + J2
X

hhi,jii

~Si · ~Sj + J3
X

hhhi,jiii

~Si · ~Sj
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CSL

J1 = 1



• B.Bauer et al., Nature 
Communications 5, 5137 
(2014) proposed a different  
model also on the Kagome  
lattice 

• Heisenberg nearest 
neighbour Model with 
additional Scalar Chirality 
term  
 
  H = J1

X

hi,ji

~Si · ~Sj + J�
X

i,j,k24

~Si ·
⇣
~Sj ⇥ ~Sk

⌘



• Are these two CSL phases 
related ? 

• Is there a simple physical 
picture or a variational wave 
function that describes this  
CSL phases ?  

• Can we come up with 
guiding principles that allow 
us to stabilize on other 
lattices ? 

• questions adressed by  
A. Wietek, A. Sterdyniak,  
A. M. Läuchli,  
(in preparation)

CSL
Unanswered Questions:



Gutzwiller projected wave functions:
• X.G.Wen (see e.g. Quantum 

Field Theory of Many-Body 
Systems, Oxford Graduate 
Texts) proposed a construction 
method for several kinds of 
spin liquids 

• Introduce parton operators:  
 

• Rewrite original Hamiltonian  
in terms of these new operators 
and apply mean-field theory 

• This leads to a mean field 
Hamiltonian 

~Si =
1

2
f†
i↵~�↵�fi�

• choose mean field 
parameters  

• compute groundstate of this 
mean field Hamiltonian 

• lives on a different 
Hilbertspace. Double 
occupancies and vacancies 
of sites possible 

• Gutzwiller projection to 
obtain physical Spin wave 
function 
 
 
 
 
 Hmean =

1
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Gutzwiller projected wave functions:

• Choose mean field 
parameters such that we have  
      flux through triangles and 
zero flux through hexagons 

• Gutzwiller project this ground 
state and compare it to 
groundstates from Exact 
diagonalization 

• Comparision by computing 
overlaps of the wave functions
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• Comparision by computing 
overlaps of the wave functions  
 

• Groundstate wave functions  
computed on a 30 site kagome 
cluster 

• overlaps again on the critical 
line for  

• very good overlap of up to 80% 

• the ground state wave function 
is a dressed version of our 
variational Gutzwiller projected 
Wavefunction in this region

OED
GW ⌘

q
|h ED| GW i|2

0.2 . J2 = J3 . 0.7



• Adding an additional scalar 
chirality term 
 
 
 
to the Hamiltonian increases the 
overlap 

• overlaps of up to 95% 

• Overlaps with the  
model were also computed 

• again very good overlaps of  
up to 96% 

• the CSL phase found on the 
kagome is described by our 
variational wave function

J�
X

i,j,k24

~Si ·
⇣
~Sj ⇥ ~Sk

⌘
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• Developed new methods to  
efficiently use symmetries 
in Exact Diagonalization 

• Developed a state-of-the-art  
ED Code for distributed 
memory machines which 
scales very well up to biggest  
system sizes 

• With this code we are able to 
investigate models in 
frustrated magnetism and 
understand phases occurring 
in these models

Conclusion:

• Investigated a Chiral Spin 
Liquid phase in the phase 
diagram of the Heisenberg 
model on the kagome lattice  
with up to third nearest 
neighbor interactions 

• found a variational wave 
function explaining this phase 

• showed by computing 
overlaps with the ground state 
wave function from ED that the 
CSL phase is described by 
our variational wave function



Thank you for your attention!



Supplementary material



• Classical phase diagram 
was investigated by Messio 
et al., PRL 108, 207204 
(2012) 

• CSL is on the critical line 
between the classical  
cuboc1 and             order 

• cuboc1 order has a finite 
expectation value of scalar  
chirality

q = 0

from Messio et al., Phys. Rev. B 83, 184401 (2011)~S1 ·
⇣
~S2 ⇥ ~S3

⌘
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