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Strongly Correlated Quantum Systems

Some Problems: Some Numerical methods:

High temperature

. * Quantum Monte Carlo

superconductivity

e Frustrated magnetism / ) ,glM?r(i?h/rrT:nsor Network
Quantum Spin Liquids J

Fractional Quantum Hall Effect Exact Diagonalization
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Method:
Exact Diagonalization for
Distributed Memory Machines




Exact Diagonalization

Solution of Schroédinger Equation

H ) = E 1))

Straightforward numerical method:

a) Choose a Basis for the Hilbertspace
b) Build up Hamiltonian Matrix

c) Diagonalize it

eigenstates and spectra of the Hamiltonian can
be analyzed

Typical exponential scaling
of computational resources in
system size

How can we go to larger system sizes?
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Choosing a basis for the Hilbertspace:
Spin-1/2 models:

bhby — oo

Hubbard-like models:

H O ﬂ — . [01,01,00,11],

Example: 40 site Heisenberg Spin 1/2 n.n. model
dim (H) = 2*° = 1099511627776

Full Hamiltonian is 240 x 249
Sparse format: =~ 40-2* =~ 351 TB




Often one is only interested in low
lying eigenstates and energies of
the Hamiltonian:

Lanczos algorithm

uses only Matrix-Vector
multiplications to produce a
converging series of eigenvalues
and eigenstates

the Matrix-Vector multiplication
can be implemented without storing
the Hamiltonian

only 2-4 so-called Lanczos vectors
are needed. Same dimension
as Hilbertspace
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Still such systems can be diagonalized!

Iteration




Symmetries:

H,S5] =0

can be used to block diagonalize the
Hamiltonian

space group symmetries, particle number
conservation,
spin-flip symmetry

gain further physical insight to the system

Calculations are done in a symmetrized
basis

in order to compute fast and memory
efficient in this basis so-called sublattice
coding techniques are applied.

concepts by H.Q. Lin, Phys. Rev. B (1990)
and A. WeiBe, Phys. Rev. E. (2013)

extended these concepts for 3 and 4 sub
lattices in two arbitrary dimension




Parallelization:

main part in the whole
computation is the Matrix-Vector
multiplication of the Hamiltonian
with a Lanczos vector

this has to be parallelized
efficiently

easy on shared-memory
machines with OpenMP

for distributed-memory machines
we split up the Lanczos vectors
amongst the processes

Communication between the
processes using MPI is necessary




Parallelization:

processes have to send other
processes parts of the Lanczos
vector

once once messages are received
the new coefficients are added to
the output vector

timing in this send-receive
procedure is of paramount
importance if we want our code to
scale to large system sizes

randomly distributing the
Hilbertspace among the
processes and buffering the
communication yields good results




Benchmarks:

Scaling:

» performed on leo3
(local university supercomputer)

* 40 site Heisenberg nearest
neighbor model on square
lattice

Big system 1.

* Transverse field Ising model on 40 site
Square lattice

 Dimension of g.s. block: 3.436.321.976
e 512 processes on VSC3

H  2m 30s secs per Lanczos iteration
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Benchmarks:
Big system 2:

e Heisenberg nearest neighbor model on a 48 site
square lattice
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* Dimension of g.s. block: 83.986.162.605

e 8192 processes on Vienna Scientific Cluster VSC3

e 20m 40s per Lanczos iteration ’ ‘ ‘
Big system 3: "‘

e Heisenberg nearest neighbor model on a 48
site Kagome lattice

 Dimension of g.s. block: 83.979.009.353

e 8192 processes on VSC3 * 10240 processes on RZG Hydra in
Garching

e 20m 10s per Lanczos iteration
L] * 4m 15s per Lanczos iteration




Application:
[dentifying Spin Liquid
FPhases

A. Wietek, A. Sterdyniak, A. M. Lauchli, (in preparation)




Chiral Spin Liquids

X.G. Wen, F. Wilczek, A. Zee,
Phys.Rev. B 39, 17 (1989) proposed a
class of states called Chiral Spin
Liquid

break parity (reflection) and time
reversal symmetry

Scalar Chirality S, - (52 X 53) as an
order parameter for time-reversal
symmetry

anyonic fractional excitations
-> Spin Liquid

chiral edge states

historically first considered as a
Laughlin wave function on a lattice




e 5. Gong, W. Zhu & D. N.
Sheng, Nature Scientific
Reports 4, 6317 (2014)
found a realistic model
realizing a CSL groundstate

* Heisenberg Model on the

Kagome Lattice with up to
third nearest neighbor
iInteractions

(%,5)




1.0

¢ 5. Gong, W. Zhu & D. N. 0.8}
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found a realistic model

realizing a CSL groundstate - 0al
* Heisenberg Model on the

Kagome Lattice with up to 0.2

third nearest neighbor

interactions 0.0

H:le§i°§j—|—J2 Z
(2,4)

 CSL phase detected for
0.2 < Jy,=J3 0.7 J1 =1




 B.Bauer et al., Nature
Communications 5, 5137
(2014) proposed a different
model also on the Kagome
lattice

* Heisenberg nearest
neighbour Model with
additional Scalar Chirality
ferm

H = J1ZS i+ Jy

2. 8

1,7, k€N




Unanswered Questions:

e Are these two CSL phases
related ?

* |s there a simple physical
picture or a variational wave
function that describes this
CSL phases ?

 Can we come up with
guiding principles that allow
us to stabilize on other
lattices ?

* questions adressed by
A. Wietek, A. Sterdyniak,
A. M. Lauchli,

(in preparation)




« X.G.Wen (see e.g. Quantum

Field Theory of Many-Body
Systems, Oxford Graduate
Texts) proposed a construction
method for several kinds of
spin liquids

Introduce parton operators:
—> 1 -
S’i — §f§oz0-0€5fi5

Rewrite original Hamiltonian
in terms of these new operators
and apply mean-field theory

This leads to a mean field
Hamiltonian

1
Hmean — 5 Z (Xijcf];gcja —+ hC) .

Z7]70-

Gutzwiller projected wave functions:

choose mean field
parameters Xij

compute groundstate of this
mean field Hamiltonian

lives on a different
Hiloertspace. Double
occupancies and vacancies
of sites possible

Gutzwiller projection to
obtain physical Spin wave
function

L0, P 0
=
LT T LT




Gutzwiller projected wave functions:

* Choose mean field
parameters such that we have
7 /2 tlux through triangles and
zero flux through hexagons

* Gutzwiller project this ground
state and compare it to
groundstates from Exact
diagonalization

* Comparision by computing
overlaps of the wave functions

O, = /| (Weplow)]




o Comparision by computing
overlaps of the wave functions

OER, = /| (Weplow)]

 (Groundstate wave functions
computed on a 30 site kagome
cluster

e overlaps again on the critical
line for 0.2 < Jy, = J3 <0.7

 very good overlap of up to 80% /2

e the ground state wave function -
IS a dressed version of our
variational Gutzwiller projected 60 02 04 06 08 10
Wavefunction in this region Oca




Adding an additional scalar
chirality term

JX Z S_{L y (S_i, X gk)
1,7, k€A
to the Hamiltonian increases the
overlap
overlaps of up to 95%

Overlaps with the J; — J,
model were also computed

again very good overlaps of
up to 96%

the CSL phase found on the
kagome Is described by our
variational wave function
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Conclusion:

* Developed new methods to

efficiently use symmetries
In Exact Diagonalization

Developed a state-of-the-art
ED Code for distributed
memory machines which
scales very well up to biggest
system sizes

With this code we are able to
iInvestigate models in
frustrated magnetism and
understand phases occurring
INn these models

e Investigated a Chiral Spin

Liquid phase in the phase
diagram of the Heisenberg
model on the kagome lattice
with up to third nearest
neighbor interactions

found a variational wave
function explaining this phase

showed by computing
overlaps with the ground state
wave function from ED that the
CSL phase is described by
our variational wave function




Thank you for your attention!




Supplementary material




e Classical phase diagram
was investigated by Messio
et al., PRL 108, 207204
(2012)

e CSL is on the critical line
between the classical
cuboc1 and g =0 order

e cuboc1 order has a finite
expectation value of scalar
chirality S - (§2 X 5‘3)

cubocl

from Messio et al., Phys. Rev. B 83, 184401 (2011)
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