Phase diagram of spinless fermions on the honeycomb lattice

Sylvain CAPPONI

Ref: S. Capponi and A. M. Läuchli, in preparation

Würzburg 25/02/2015

Motivation

- * What if one could generate topological insulating phases without needing spin-orbit ?
- There are well-known examples of topological phases: insulators in the bulk but with gapless edge states

Quantum Anomalous Hall (QAH)

spinless fermions

breaks 7 chiral edge mode charge currents Haldane, PRL '88

Quantum spin Hall (QSH)

spinful fermions does not break 7 helical edge mode spin currents

see review by X.-L. Qi and S.-C. Zhang, RMP '11

Motivation

- Mean-field results for simple model: YES !
- In the spinless case, this realizes famous Haldane model with interactions (aka Chern insulator) !

spinful fermions

S. Raghu, X.-L. Qi, C. Honerkamp, S.-C. Zhang, PRL '08

What about classical phases ?

- But for large V's, one expects other CDW-like instabilities (Wigner crystallization) !
- This is indeed found using larger unit-cell mean-field approaches

C. Weeks and M. Franz, PRB '10

Grushin et al., PRB '13

CM: charge modulation (breaks A <-> B) K = Kekulé pattern on hexagons

What about numerics ?

Hard problem since there is a sign problem (for V2>0) despite particle-hole symmetry

 $ED_{(a)}$ (up to N=30 sites)

García-Martínez et al., PRB '13 M. Daghofer and M. Hohenadler, PRB '14

Grushin et al., PRB '13

Outline

* Focus on the spinless case

- Study of the classical limits + perturbation
- Exact Diagonalization of the quantum model
- Global phase diagram and discussion

Model and methods

Interacting spinless fermions on honeycomb $\mathcal{H} = -t \sum_{\langle ij \rangle} c_i^{\dagger} c_j + h.c. + V_1 \sum_{\langle ij \rangle} (n_i - 1/2)(n_j - 1/2) + V_2 \sum_{\langle \langle ij \rangle \rangle} (n_i - 1/2)(n_j - 1/2)$

Working at half-filling

Limit of large interactions

- Ising model with competing interactions V1 and V2
- Then, we will ask what is the effect of a small t?

Corboz et al., EPL '12

Limit of large interactions

Sestigailion: A thingastigation of the quanticate long the hope wood but the hope wood lattice 13 acy

N = 26

\cdot (A,B)	(CSD)	$I(A, (\mathcal{B}, \mathcal{B}))(\mathcal{O})$	$C(\mathbf{A})B)$	$(A(\mathcal{B},\mathcal{B})C,\mathcal{I})$	(A, B)	(A, B, C, D)	
	G	$I \mathcal{R}_{2\pi/3} t$	σ	$\mathcal{R}_2 \mathcal{R}_{2\pi/3} \sigma$	σ	${\cal R}_{2\pi/3}^{\prime}\sigma$	
	N_{el} .		<u> </u>		6	or-by-die	ordor
		$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$			Ψια		JIUEI
	J_2	$\frac{1}{2}$ $\frac{1}{2}$	••••	-1 0	shou	ald select	some
	Γ_4	$\frac{2}{3}$ / -1	• • /		1	statos 1	
	Γ_{5}	3/./.	• •	0 1	-1		

Characteralater 37 the permittation group S_4 . First ates classified interaction of the space experimentation of the space experimentation of the space experimentation of permittation. The spectra experimentation of permittation. The spectra experimentation of the space exp

Limit of large interactions

* Effect of a small hopping in perturbation

Exact Diagonalizations

 Cluster properties are crucial

					a second provide the second	
Name	a	b	sym. group	K (2)	M (3)	X (6)
18	(6, 0)	$(3, 3\sqrt{3})$	C_{6v}	yes	no	no
24	$(6, 2\sqrt{3})$	$(0, 4\sqrt{3})$	C_{6v}	yes	yes	yes
26	$(7,\sqrt{3})$	$(2, 4\sqrt{3})$	C_6	no	no	no
28	$(7,\sqrt{3})$	$(0, 4\sqrt{3})$	Z_2	no	yes (1)	no
30a	$(3, 5\sqrt{3})$	$(-3, 5\sqrt{3})$	$C_2 \times C_2$	yes	no	no
30b	$(5, 3\sqrt{3})$	$(-5, 3\sqrt{3})$	$C_2 \times C_2$	no	no	no
32	(8,0)	$(4, 4\sqrt{3})$	C_{6v}	no	yes	no
34	$(9,\sqrt{3})$	$(2, 4\sqrt{3})$	Z_2	no	no	no
36	(6, 0)	$(6, 6\sqrt{3})$	$C_2 \times C_2$	yes	yes (1)	yes (2)
38	$(8, 2\sqrt{3})$	$(1, 5\sqrt{3})$	C_6	no	no	no
40	(10, 0)	$(4, 4\sqrt{3})$	Z_2	no	yes (1)	no
42	$(9,\sqrt{3})$	$(3, 5\sqrt{3})$	C_6	yes	no	no

Energetics

V₁=0 line

CDW Kekulé stripy

V₁=4 line

ΓΑ1
ΓΑ2
ΓΕ1
ΓΕ2
ΓD1

ΓD2

(π/3,0)ο

KA1

KA2

KE

Me1

Me2

Mol

 $(\pi/3,0)e$

3

2.5

1.5

energy levels

deg=18

Along the V_1 =4 V_2 line

(Charge) current correlations

 For V₁=0, there exists a perfect correlation pattern only at small V₂/t

Current structure factor

Sample variations can be partly understood

vanishing value !?

Global Phase Diagram

Concluding remarks

- Clarification of the phase diagram with new phases at large interactions
- No evidence for Chern insulators

Ref: S. Capponi and A. M. Läuchli, in preparation

Perspectives

Possible progress in solving the sign problem, as was done for V₂=0 recently ?
E. Fulton Huffman and S. Chandrasekharan, PRB '14
L. Wang, P. Corboz and M. Troyer, NJP '14
Z.-X. Li, Y.-F. Jiang, and H. Yao, arXiv:1408

Investigate closely related models to look for topological insulators !