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Motivation
What if one could generate topological insulating phases without needing 
spin-orbit ?

There are well-known examples of topological phases: insulators in the 
bulk but with gapless edge states
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We consider extended Hubbard models with repulsive interactions on a honeycomb lattice, and the
transitions from the semimetal to Mott insulating phases at half-filling. Because of the frustrated nature of
the second-neighbor interactions, topological Mott phases displaying the quantum Hall and the quantum
spin Hall effects are found for spinless and spin fermion models, respectively. The mean-field phase
diagram is presented and the fluctuations are treated within the random phase approximation.
Renormalization group analysis shows that these states can be favored over the topologically trivial
Mott insulating states.
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Introduction.—Partly motivated by the discovery of the
high Tc superconductivity, the study of Mott insulators has
attracted great attention in recent years. Defined in a gen-
eral sense, interactions drive a quantum phase transition
from a metallic to an insulating ground state in these
systems. Most Mott insulators found in nature also have
conventional order parameters, describing, for example,
the charge-density-wave (CDW) or the spin-density-wave
(SDW) orders. However, Mott insulators with exotic
ground states, such as the current carrying ground states
have also been proposed theoretically [1– 4]. In parallel
with the study of strongly correlated systems, there has
recently been a growing interest in realizing topologically
nontrivial states of matter in band insulators. In the quan-
tum anomalous Hall (QAH) insulator [5,6], the ground
state breaks time-reversal symmetry but does not break
the lattice translational symmetry. The ground state has a
bulk insulating gap, but has chiral edge states. In the
quantum spin Hall (QSH) insulator [7–9], the ground state
does not break time-reversal symmetry, has a bulk insulat-
ing gap, but has helical edge states, where electrons with
the opposite spins counterpropagate. The QSH state has
recently been predicted theoretically [9] and observed
experimentally in HgTe quantum wells [10].

Given the tremendous interest in finding Mott insulators
with exotic ground states, and the recent discovery of the
topologically nontrivial band insulators, it is natural to ask
whether one can find examples of topological Mott insu-
lators, which we define as states with bulk insulating gaps
driven by the interaction, and inside which lie topologi-
cally protected edge states. Furthermore, electronic states
in the Mott insulator phases are characterized by topologi-
cal invariants, namely, the U!1" Chern number [11] in the
case of the QAH state, and the Z2 invariant [12] in the case
of the QSH state. In this Letter, we report on the first
example of such a case by systematically studying
Hubbard models with repulsive interactions on a two-
dimensional honeycomb lattice. The repulsive honeycomb
Hubbard model was studied in the context of antiferro-
magnetism using quantum Monte Carlo simulations [13]

and is also a possible model for a spin liquid [14]. Here, we
consider further neighbor repulsion and demonstrate that
topological Mott phases displaying the QAH and the QSH
effects are generated dynamically in this system.

Spinless fermions and the QAH state.—The model
Hamiltonian for spinless fermions with nearest-neighbor
and next-neighbor interactions is written as

 H # $
X

hiji
t!cyi cj % H:c:" % V1

X

hi;ji
!ni $ 1"!nj $ 1"

% V2

X

hhi;jii
!ni $ 1"!nj $ 1" $!

!X
i
ni $ N

"
; (1)

where V1 and V2 are nearest-neighbor and next-neighbor
repulsions, respectively. Since the honeycomb lattice is
bipartite, consisting of two triangular sublattices (referred
to here as A and B), nearest-neighbor repulsion will fa-
vor a CDW phase with an order parameter " # 1

2 &
!hcyiAciAi$ hcyiBciBi" that breaks a discrete (inversion) sym-
metry. However, since the second-neighbor interactions
within the same sublattice are frustrated, CDW order will
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FIG. 1. Interactions considered in our model Hamiltonian
(leftmost plaquette), Eq. (1). Various order parameters are shown
for the A sublattice (open circles) and for the B sublattice (filled
circles) in the middle and right plaquettes. The QAH-QSH order
parameters #A, #B are complex 4-vectors associated with the
directed second-neighbor links defined by bi. In the case of
spinless fermions, #A and #B are complex scalars.
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Motivation
Mean-field results for simple model: YES !

In the spinless case, this realizes famous Haldane model with 
interactions (aka Chern insulator) !
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be suppressed; instead, we consider the possibility of gen-
erating bond order by defining the following order parame-
ter for i, j next nearest neighbors: !ij ! !"ji ! hcyi cji. Let
a1, a2, a3 be the nearest-neighbor displacements from a B
site to an A site such that z # a1 $ a2 is positive. We also
define the displacements b1 ! a2 % a3, b2 ! a3 % a1,
etc., which connect two neighboring sites on the same
sublattice (Fig. 1). A translational and rotational invariant
ansatz of !ij is chosen as

 !i;i&bs !
!
!A ! j!jei"A ; i 2 A
!B ! j!jei"B ; i 2 B

; (2)

which are complex scalars that live along the directed
second-neighbor links. The real and imaginary parts of
!ij break different discrete symmetries and are thus dis-
tinct order parameters: Re'!ij( breaks particle-hole sym-
metry, Im'!ij( breaks time-reversal symmetry, and both
break the C6v point-group symmetry when "A &"B ! 0.

Because of translational symmetry, the mean-field free-
energy at T ! 0 is readily obtained:
 

F'#;!; !";"( ! %
X

k

""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
jt'k(j2 & 'V1#& 2V2j!jSk& !"S"(2

q

& 3L2'V1#2 & 2V2j!j2(: (3)

Here, t'k( ! P3
n!1 exp'ik # an(, !" ! '"A &"B(=2, " !

'"A %"B(=2, Sk& !" !
P3
n!1 sin'k # bn & !"(, S" ! sin".

Thus, the next-neighbor hopping amplitudes are purely real
only when both " ! 0 and !" ! 0.

When both # and ! ! 0, and at half-filling, the system is
a semimetal with two Fermi pointsK) that obeyK) # bi !
)2$=3 and the density of states vanishes linearly; the
dispersion in the vicinity of these so-called Dirac points
is governed by a 2D massless Dirac Hamiltonian in k
space. The CDW phase corresponds to an ordinary insula-
tor with a gap at the Fermi energy. As for !, its phase
relative to the nearest-neighbor hopping amplitude plays
an important role in determining its properties: while a
nonzero Re'!(merely shifts the energy of the Dirac points,
a nonzero imaginary part Im'!( opens a gap at the Fermi
points. Thus, when the system remains at half-filling, it is
more favorable to develop purely imaginary next-neighbor
hopping amplitudes; such a configuration corresponds to a
phase with spontaneously broken time-reversal symmetry.

To see whether such a phase can be favored, we mini-
mize the free-energy and arrive at the following self-
consistent equations:

 # ! 1

6L2

X

k

V1#& 2V2!Sk& !"S""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
jt'k(j2 & 'V1#& 2V2!Sk& !"S"(2

q ; (4)
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6L2

X

k

Sk& !"'V1#& 2V2!Sk& !"S"("""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
jt'k(j2 & 'V1#& 2V2!Sk& !"S"(2

q : (5)

Because of the vanishing density of states near the Fermi

points, there is no instability towards any order with infini-
tesimal interactions. Interestingly, the self-consistent equa-
tion for ! shows that a nontrivial solution can occur only
when " ! 0, when V1 ! 0, beyond a critical value of
V2c > 0, which satisfies

 

1

V2c
!
S2
"

3L2

X

k

S2
k& !"

jtkj
; (6)

a phase in which j!j> 0 , !" ! 0, and " ! )$=2 is
favored. Thus, the system acquires purely imaginary
second-neighbor hoppings and breaks time-reversal sym-
metry. In the vicinity of this saddle point, fluctuations in
both !" and " are gapped. This configuration is stable at
finite V1 and thus does not require fine-tuning (see Fig. 2).
The band insulator version of the CDW state was consid-
ered in Ref. [15], while the quantum Hall (QH) state on a
honeycomb lattice was considered in Ref. [5]. The phase
with nonvanishing imaginary ! is precisely equivalent to
the model in Ref. [5]. In this phase, the filled band has a
nonzero Chern number [11] and is an integer quantum Hall
effect phase that is realized without Landau levels [5]. QH
states without Landau levels are referred to here as the
QAH states. However, the topologically nontrivial gap for
the QAH state arises here from many-body interactions,
and we shall refer to such states as topological Mott
insulators.

The mean-field phase diagram is shown in Fig. 2. There
is a continuous transition from the semimetal to either the
CDW or the QAH phase, and there is also a first-order
transition from the CDW to the QAH phase that terminates
at a bicritical point. By integrating out the fermionic fields,
it is possible to construct a Landau-Ginzburg (LG) theory
near the semimetallic region. Because of the linear disper-
sion of the Fermi points, the LG free-energy contains
anomalous terms of the form j#j3 and jIm'!(j3 [16].
Thus, even within mean-field theory, the CDW order pa-
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FIG. 2 (color online). Phase diagram for spinless fermions
(t ! 1). The semimetallic (SM) state that occurs at weak cou-
pling is separated from the CDW and the topological QAH states
via a continuous transition. The line separating the QAH and
CDW marks a first-order transition, which terminates at a
bicritical point.
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rameter, for instance, grows as (V1 ! V1c) rather than the
usual "V1 ! V1c#1=2 [13].

Spinful fermions and the QSH state.—Next, we take into
account the spin degrees of freedom and include an on-site
Hubbard repulsion in our model Hamiltonian (! $ 0):

 

H$!
X

hiji"
t"cyi"cj"%H:c:#%U

X
i
ni"ni#

%V1

X

hi;ji
"ni!1#"nj!1#%V2

X

hhi;jii
"ni!1#"nj!1#; (7)

where ni $ ni" % ni#. Since the honeycomb lattice is bi-
partite, on-site repulsion gives rise to a SDW phase at half-
filling; a standard decomposition of the Hubbard term
introduces the SDW order parameter M: M $ 1

2 "hSiAi!
hSiBi#. As in the spinless case, nearest-neighbor repulsion
favors a CDW. Since the second-neighbor repulsion is
frustrated, we are again led to the possibility of a topologi-
cal phase similar to the QAH. However, the spin degrees of
freedom introduce two possibilities (translation invariance
along with spin conservation eliminate other possibilities):
(1) two copies of QAH states—i.e. the chirality of the
second-neighbor hopping is the same for each spin projec-
tion, (2) the QSH state, where the chiralities are opposite
for each spin projection. The latter possibility breaks a
continuous global SU"2# symmetry associated with choos-
ing the spin projection axis; however, time-reversal sym-
metry is preserved. The QSH state on the honeycomb
lattice was considered in Ref. [7], where the insulating
gap arises from the microscopic spin-orbit coupling. It
was later shown that the magnitude of the spin-orbit gap
is negligibly small in graphene [17,18]. In our case, how-
ever, the insulating gap is generated dynamically from the
many-body interaction and can be viewed as an example of
dynamic generation of spin-orbit interaction [19].
Introducing the Hubbard-Stratonovich fields (sum over
repeated indices implied) #!ij $ cyi$"

!
$%cj%, ! $

0; . . . ; 3, where "! $ "1;!#, the next-neighbor interac-
tions can be recast using the identity "ni ! 1#"nj ! 1# $
1! 1

2 "#
!
ij#y#!ij. Physically, h#0i ! 0 corresponds to the

QAH phase, whereas if one of the vector components
h#ii ! 0, then the QSH phase occurs. A translationally
invariant decomposition of the next-neighbor interactions
via h#!i;i%bsi $ #!ei&

!
A ; i 2 A (and similarly for the other

sublattice) gives rise to a 4& 4 Hamiltonian that is readily
diagonalized in a tensor product basis ! ' ", where ! and
" are Pauli matrices in spin and sublattice space, respec-
tively. This way, each phase corresponds to a particular
nonzero expectation value of a fermion bilinearP

~k!
y
~k
d̂" ~k#! ~k, where d̂" ~k# / '3 for the CDW and QAH,

and d̂" ~k# / "3'3 for SDW and QSH. A detailed and stan-
dard numerical study of the free-energy at T $ 0 and its
saddle point solutions produces the phase diagram shown
in Fig. 3. In addition to the ordinary CDW and SDW
insulating phases, there is a phase for V2 >V2c ( 1:2t in

which the 4-vector is purely imaginary (as in the spinless
case), collinear, and staggered from one sublattice to the
next: h#!ii%bn;Ai $ !h#

!
ii%bn;Bi, and both QAH and QSH are

equally favorable ground states, having identical free en-
ergies within mean-field theory. Additionally, there is
never a coexistence of both QAH and QSH phases; indeed,
a Landau-Ginzburg treatment in this region explicitly
shows the absence SO"4# symmetry of the vector #!.
This occurs due to the difference of the manner in which
#0 and ~# are coupled to the fermionic fields—which
favors either a phase with broken Z2 symmetry (QAH) or
with broken SU"2# symmetry, but never both simulta-
neously [16].

Quantum fluctuations, however, lift the mean-field
degeneracy between the QAH and QSH phases. To qua-
dratic order in quantum fluctuations (RPA) about
the QSH phase, we obtain an effective action Seff $P

~k(#
!" ~k;"#K!)" ~k;"#(#)"! ~k;!"#, which shows the

presence of six modes (2 longitudinal and 4 transverse
modes), and 2 of the transverse modes correspond to
degenerate Goldstone modes whose dispersion is given

by ""q# $
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
jtk%qj2 ! jtktk%qj

q
, which for q small is linear

with velocity v ( vf $ 3t=2jaj. Thus, the zero-point mo-
tion associated with these gapless modes lowers the free-
energy of the QSH state relative to the QAH state. In the
presence of spin-orbit coupling (SOC), considering for
concreteness the Rashba SOC HR $ *R"s& p# ) ẑ, the
Goldstone modes become gapped and do not interfere
with the gapless edge excitations. Thus, by breaking the
SU"2# spin symmetry, the Rashba term stabilizes the QSH
phase by ensuring that the only low energy excitations in
the system are the helical edge modes of the QSH phase.

Renormalization Group Analysis.—Next, we go beyond
mean-field theory and RPA using the temperature (T)-flow
functional renormalization group (fRG)[20]. In this
scheme, we discretize the ~k- dependence of the interaction
[21] and consider all possible scattering processes between
a set of initial and final momenta that occur between points

0
2

4

0
1

2

0

2

4

CDW

U

QSH

CDW

SM

V
1

QSH

SDW

SDW

V
2

FIG. 3 (color online). Complete mean-field phase diagram for
the spinful model. The transitions from the semimetal (SM) to
the insulating phases are continuous, whereas transitions be-
tween any two insulating phases are first order.
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What about classical phases ?
But for large V’s, one expects other CDW-like instabilities (Wigner 
crystallization) !

This is indeed found using larger unit-cell mean-field approaches
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FIG. 1. (Color online) Unit cell and mean-field parameters of our model. In each panel we show 9 distinct effective hoppings, making up a
total of 27 (see Appendix A 1).

in Fig. 1. In addition, there are six local energy terms (three
per sublattice, ρA and ρB), of which only five are independent
due to charge conservation. See Appendix A 1 for details.

Using the variational mean-field approach, one finds the set
of 33 = 3 × 9 + 6 mean-field equations that, complemented
by charge conservation, determine the mean-field parameters
and the chemical potential µ (see Appendixes A 2 and A 3).
The mean-field equations read as

ξij = −V1

N

∑

k

γ
ij
k ⟨b†j (k)ai(k)⟩MF, (6)

χA,δ
ij = −V2

N

∑

k

λA,δ
k,ij ⟨a

†
j (k)ai(k)⟩MF, (7)

χB,δ
ij = −V2

N

∑

k

λB,δ
k,ij ⟨b

†
j (k)bi(k)⟩MF, (8)

ρA
i = V1nB + 3V2nA − 3V : 2nA

i , (9)

ρB
i = V1nA + 3V2nB − 3V2n

B
i , (10)

where λA,δ
k,ij , λB,δ

k,ij are phase factors analogous to γ
ij
k defined

in Eq (3), nc
i = 1

N

∑
k⟨c

†
i (k)ci(k)⟩MF and nc =

∑3
i=1 nc

i with
c = A,B. Detailed expressions for these matrices can be found
in Appendix A 2. The notation ⟨. . .⟩MF means average in the
macrocanonical ensemble taking the mean-field Hamiltonian
in the Boltzmann factor.

In order to obtain the mean-field phase diagram, we solve
the mean-field equations self-consistently (see Appendix A 3)
and take the solution (if more than one is obtained) that
minimizes the free energy in Eq. (A10) (see Appendix A 4).
Care must be taken with charge-like order parameters, Eqs. (9)
and (10). Due to the frustration introduced by NNN interaction,
these order parameters may flow to a non-self-consistent
solution where the charge-like order parameters in different
sublattices interchange at each step. Apart from this subtlety,
getting a solution is straightforward.

We will analyze first the phase diagram obtained at half-
filling, which is interesting on its own and later discuss the
modification introduced in the V2 = 0 case by the charge
decoupling. We will see that the charge modulated phases
wash out the topologically nontrivial phases. Finally, we see

how these are restored by the inclusion of the second-neighbor
interaction.

A. Half-filling

Let us first analyze the half-filled case, where n ≡ nA +
nB − 3 = 0. This case provides a test to the present mean-field
analysis, since a similar approach, also using a 6-atom unit
cell, has been taken in Ref. 29. For comparison, we show the
phase diagram obtained in Ref. 29 in the left panel of Fig. 2.
In the right panel of Fig. 2, we can see the phase diagram of
the present work (we use the same color code). We plot the
different phases (that will be described in what follows) as a
function of the interaction strength V1 and V2 in units of the
hopping parameter t . The half-filled case was first explored
in the original lattice in Ref. 25 and nontrivial topological
phases were already encountered for values of the interaction
V2 > V1.

For V1 ! 1.5t and V2 ! 2t , the two phase diagrams
coincide. For V1 " 1.5t , however, we find that the semimetallic
(SM) and the charge density wave (CDW) phases are robust
against the Kekulé phase. The Kekulé phase is characterized
by an alternating bond strength as shown schematically in
the inset of the left-hand side of Fig. 3. This distortion is
important in the physics of graphene because it opens a gap
in the spectrum breaking the translational symmetry of the
original honeycomb lattice while preserving time reversal (T )

FIG. 2. (Color online) (Left) Mean-field phase diagram for the
half-filling case reproduced from Ref. 29. The various phases are
described in the text. SM means semimetal. (Right) Mean-field phase
diagram obtained in present work. Lines are guides to the eyes. CMs
stands for the charge modulated phase discussed in the text.
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in Fig. 1. In addition, there are six local energy terms (three
per sublattice, ρA and ρB), of which only five are independent
due to charge conservation. See Appendix A 1 for details.

Using the variational mean-field approach, one finds the set
of 33 = 3 × 9 + 6 mean-field equations that, complemented
by charge conservation, determine the mean-field parameters
and the chemical potential µ (see Appendixes A 2 and A 3).
The mean-field equations read as

ξij = −V1

N

∑

k

γ
ij
k ⟨b†j (k)ai(k)⟩MF, (6)

χA,δ
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ρA
i = V1nB + 3V2nA − 3V : 2nA

i , (9)

ρB
i = V1nA + 3V2nB − 3V2n

B
i , (10)

where λA,δ
k,ij , λB,δ

k,ij are phase factors analogous to γ
ij
k defined

in Eq (3), nc
i = 1

N

∑
k⟨c

†
i (k)ci(k)⟩MF and nc =

∑3
i=1 nc

i with
c = A,B. Detailed expressions for these matrices can be found
in Appendix A 2. The notation ⟨. . .⟩MF means average in the
macrocanonical ensemble taking the mean-field Hamiltonian
in the Boltzmann factor.

In order to obtain the mean-field phase diagram, we solve
the mean-field equations self-consistently (see Appendix A 3)
and take the solution (if more than one is obtained) that
minimizes the free energy in Eq. (A10) (see Appendix A 4).
Care must be taken with charge-like order parameters, Eqs. (9)
and (10). Due to the frustration introduced by NNN interaction,
these order parameters may flow to a non-self-consistent
solution where the charge-like order parameters in different
sublattices interchange at each step. Apart from this subtlety,
getting a solution is straightforward.

We will analyze first the phase diagram obtained at half-
filling, which is interesting on its own and later discuss the
modification introduced in the V2 = 0 case by the charge
decoupling. We will see that the charge modulated phases
wash out the topologically nontrivial phases. Finally, we see

how these are restored by the inclusion of the second-neighbor
interaction.

A. Half-filling

Let us first analyze the half-filled case, where n ≡ nA +
nB − 3 = 0. This case provides a test to the present mean-field
analysis, since a similar approach, also using a 6-atom unit
cell, has been taken in Ref. 29. For comparison, we show the
phase diagram obtained in Ref. 29 in the left panel of Fig. 2.
In the right panel of Fig. 2, we can see the phase diagram of
the present work (we use the same color code). We plot the
different phases (that will be described in what follows) as a
function of the interaction strength V1 and V2 in units of the
hopping parameter t . The half-filled case was first explored
in the original lattice in Ref. 25 and nontrivial topological
phases were already encountered for values of the interaction
V2 > V1.

For V1 ! 1.5t and V2 ! 2t , the two phase diagrams
coincide. For V1 " 1.5t , however, we find that the semimetallic
(SM) and the charge density wave (CDW) phases are robust
against the Kekulé phase. The Kekulé phase is characterized
by an alternating bond strength as shown schematically in
the inset of the left-hand side of Fig. 3. This distortion is
important in the physics of graphene because it opens a gap
in the spectrum breaking the translational symmetry of the
original honeycomb lattice while preserving time reversal (T )

FIG. 2. (Color online) (Left) Mean-field phase diagram for the
half-filling case reproduced from Ref. 29. The various phases are
described in the text. SM means semimetal. (Right) Mean-field phase
diagram obtained in present work. Lines are guides to the eyes. CMs
stands for the charge modulated phase discussed in the text.
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in Fig. 1. In addition, there are six local energy terms (three
per sublattice, ρA and ρB), of which only five are independent
due to charge conservation. See Appendix A 1 for details.

Using the variational mean-field approach, one finds the set
of 33 = 3 × 9 + 6 mean-field equations that, complemented
by charge conservation, determine the mean-field parameters
and the chemical potential µ (see Appendixes A 2 and A 3).
The mean-field equations read as

ξij = −V1

N

∑

k

γ
ij
k ⟨b†j (k)ai(k)⟩MF, (6)

χA,δ
ij = −V2

N

∑

k

λA,δ
k,ij ⟨a

†
j (k)ai(k)⟩MF, (7)

χB,δ
ij = −V2

N

∑

k

λB,δ
k,ij ⟨b

†
j (k)bi(k)⟩MF, (8)

ρA
i = V1nB + 3V2nA − 3V : 2nA

i , (9)

ρB
i = V1nA + 3V2nB − 3V2n

B
i , (10)

where λA,δ
k,ij , λB,δ

k,ij are phase factors analogous to γ
ij
k defined

in Eq (3), nc
i = 1

N

∑
k⟨c

†
i (k)ci(k)⟩MF and nc =

∑3
i=1 nc

i with
c = A,B. Detailed expressions for these matrices can be found
in Appendix A 2. The notation ⟨. . .⟩MF means average in the
macrocanonical ensemble taking the mean-field Hamiltonian
in the Boltzmann factor.

In order to obtain the mean-field phase diagram, we solve
the mean-field equations self-consistently (see Appendix A 3)
and take the solution (if more than one is obtained) that
minimizes the free energy in Eq. (A10) (see Appendix A 4).
Care must be taken with charge-like order parameters, Eqs. (9)
and (10). Due to the frustration introduced by NNN interaction,
these order parameters may flow to a non-self-consistent
solution where the charge-like order parameters in different
sublattices interchange at each step. Apart from this subtlety,
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filling, which is interesting on its own and later discuss the
modification introduced in the V2 = 0 case by the charge
decoupling. We will see that the charge modulated phases
wash out the topologically nontrivial phases. Finally, we see

how these are restored by the inclusion of the second-neighbor
interaction.

A. Half-filling

Let us first analyze the half-filled case, where n ≡ nA +
nB − 3 = 0. This case provides a test to the present mean-field
analysis, since a similar approach, also using a 6-atom unit
cell, has been taken in Ref. 29. For comparison, we show the
phase diagram obtained in Ref. 29 in the left panel of Fig. 2.
In the right panel of Fig. 2, we can see the phase diagram of
the present work (we use the same color code). We plot the
different phases (that will be described in what follows) as a
function of the interaction strength V1 and V2 in units of the
hopping parameter t . The half-filled case was first explored
in the original lattice in Ref. 25 and nontrivial topological
phases were already encountered for values of the interaction
V2 > V1.

For V1 ! 1.5t and V2 ! 2t , the two phase diagrams
coincide. For V1 " 1.5t , however, we find that the semimetallic
(SM) and the charge density wave (CDW) phases are robust
against the Kekulé phase. The Kekulé phase is characterized
by an alternating bond strength as shown schematically in
the inset of the left-hand side of Fig. 3. This distortion is
important in the physics of graphene because it opens a gap
in the spectrum breaking the translational symmetry of the
original honeycomb lattice while preserving time reversal (T )

FIG. 2. (Color online) (Left) Mean-field phase diagram for the
half-filling case reproduced from Ref. 29. The various phases are
described in the text. SM means semimetal. (Right) Mean-field phase
diagram obtained in present work. Lines are guides to the eyes. CMs
stands for the charge modulated phase discussed in the text.
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FIG. 3. (Color online) (i) ED phase diagram at n = 1
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the many-body gap "/t . The right-hand side shows the energy spectrum against total momentum Q = Q1 + L1Q2 for the (b) CMs phase, (c)
Kekulé phase, (d) SM phase, and (e) CDW phase. The small numbers indicate the degeneracy of each state. The zero of energies is chosen to
be the ground-state energy. The phases are identified by the number of ground states over which there is the highest gap. (ii) Mean-field phase
diagram calculated following Ref. 10.

argue that they correspond to the SM, Kekulé, CDW, and CMs
phases and discuss their main signatures. We define a phase
transition when the gap above the number of ground states on
either side of the transition is equal. We note that the phase
boundaries might be altered by going to larger systems or
applying alternative definitions to identify the phases.

In the following section, we will use these findings to relate
to previous works to finally compare with the mean-field
diagram in Fig. 3(ii) of Ref. 10 which includes all possible
(nonsuperconducting) mean-field decouplings with a tripled
unit cell. In particular, this phase diagram is consistent with
past mean-field studies for which the absence of the Kekulé4,7

or CMs phases4,5,7,9 in the mean-field phase diagrams was due
to the fact that these works did not allow for these mean-field
solutions.

A. Semimetal phase

This phase, labeled SM and shown in red in Fig. 3(a),
is straightforward to characterize since it stems from the
noninteracting (V1 = V2 = 0) limit of Hamiltonian (2). For
! = 3 × 3 at half-filling (N = 9), there are 2! = 18 lattice
sites to fit 9 particles. Seven of them sit at the lower states, one
at the ! point at (0,0), and six particles go to the six degenerate
momenta at (1,0),(2,0),(0,1),(2,1),(0,2),(1,2). We have two
particles left for four degenerate single-particle states, two at
the K point and two at the K ′ point, since at these points there
are two degenerate states, one from each band. This gives a
freedom to choose the ground state. We have two particles to
fill four states, the degeneracy of which is given by the binomial
coefficient C(4,2) = 6 which is the ground-state degeneracy
for the noninteracting case. Out of these six possibilities, four
of them have a particle at K and a particle at K ′ and thus a total
momentum of Q = 0. The remaining two configurations have
two particles at the same valley. Having both at K = (1,1)
results in a total momentum (2,2) or Q = 8. Similarly placing
the two last particles at K ′ = (2,2) we expect to have a single
state at momentum (1,1), or Q = 4.

To summarize, the noninteracting Hamiltonian in ED has a
sixfold-quasidegenerate ground state at half-filling with four
states at Q = 0, one state at Q = 4 and one state at Q = 8.

We observe this structure for a finite region of parameters
colored red in Fig. 3(a) connected to the noninteracting
Hamiltonian and thus we interpret this phase as a SM phase.
The spectrum for such phase is shown in Fig. 3(d) where
the sixfold-quasidegenerate ground state is observed at the
momenta discussed above. The spectral evolution of the energy
levels within the phase upon changing V1 and V2 is smooth with
no level crossings.

Finally, note that the SM phase has all discrete symmetries,
i.e., time reversal (T ), inversion (I), and the combined action
of both (T I). Out of the sixfold-quasidegenerate ground states,
the states at Q = K ,K ′ would interchange under the action of
the operators representing T , I. The operation T I leaves the
momentum quantum numbers invariant.

B. Charge density wave phase

The second phase that we identify is labeled CDW and
is shown in light blue in Fig. 3(a). Its spectrum shows a
twofold-degenerate ground state at Q = 0 [Fig. 3(e)] and
would break spontaneously the sublattice symmetry in the
thermodynamic limit. The most transparent way to understand
that this phase is indeed a CDW is to investigate the strong
coupling limit at V1/t → ∞ with V2 = 0 to which this phase
is adiabatically connected. Calculating the degeneracy of such
a strong coupling state is a classical problem, the ground state
of which is represented in Fig. 4.

As only one sublattice is occupied in either of these classical
ground states, both of them are zero-energy eigenstates of
the NN interaction V1. We expect this state to appear at
total momentum Q = 0 since it is a charge density wave
(CDW) order state within the unit cell. Indeed, the ED of the
Hamiltonian with V1 ̸= 0 and V2 = t = 0 yields exactly this
twofold-degenerate ground state at zero energy. The excited
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Fig. 22. The N = 18, 24, 26, 28, 30, 32 samples.

but frustrates the two others as well as the non coplanar
solutions. The other samples are frustrating but can allow
a collinear order if twisted boundary conditions (TBC) are
used. This is the case for the N = 18 sample if a twist of
� is applied along t1 or t2.

To search for spiral order, we used TBC and sweep the
whole range [0, 2�] of twist angles �1,2 in the t1 and t2

directions. These specific boundary conditions are defined
as:

S(Ri + tj) = ei�jSz(Ri)S(Ri)e
�i�jSz(Ri). (13)

This allows to look for boundary conditions which would
not frustrate helical ground-states. This approach was found
e�ective for the Heisenberg model on the triangular lat-
tice to deal with samples frustrating the three-sublattice
Néel order [1]. For such samples the ground-state energy
was found to reach its minimum for the twists which re-
lease the frustration: at that point the spectra recover the
characteristic features of Néel order.

A VBC with the pattern of Read and Sachdev [31]
(considered in Sect. 3.3) fits in the N = 30 sample but
not on a N = 32 sample.
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Fig. 22. The N = 18, 24, 26, 28, 30, 32 samples.

but frustrates the two others as well as the non coplanar
solutions. The other samples are frustrating but can allow
a collinear order if twisted boundary conditions (TBC) are
used. This is the case for the N = 18 sample if a twist of
� is applied along t1 or t2.

To search for spiral order, we used TBC and sweep the
whole range [0, 2�] of twist angles �1,2 in the t1 and t2

directions. These specific boundary conditions are defined
as:

S(Ri + tj) = ei�jSz(Ri)S(Ri)e
�i�jSz(Ri). (13)

This allows to look for boundary conditions which would
not frustrate helical ground-states. This approach was found
e�ective for the Heisenberg model on the triangular lat-
tice to deal with samples frustrating the three-sublattice
Néel order [1]. For such samples the ground-state energy
was found to reach its minimum for the twists which re-
lease the frustration: at that point the spectra recover the
characteristic features of Néel order.

A VBC with the pattern of Read and Sachdev [31]
(considered in Sect. 3.3) fits in the N = 30 sample but
not on a N = 32 sample.
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N = 24 N = 32

FIG. 4: (Color online) Illustration of the stripy charge ordering pattern and the line defects for the N = 24 (left panel) and N = 32 (right
panel) clusters. The left part in each panel indicates a pristine stripy configuration, while the right parts shows how another ground state can be
reached by a one-dimensional collective transposition of particles. For the N = 24 cluster the line move wraps completely around the sample
and connects two ground states without defect lines, while for the N = 32 the indicated shifts of particles generate a ground state with a defect
line, where the region along the lines resembles a rotated pristine stripy state.

1. Néel CDW state

We start with the least degenerate region, 4/5 < V1  1,
where there are only two Néel ground states. These two states
are symmetry related (and thus cannot be split by diagonal
terms) and it is not possible to connect the two states by a
finite order in perturbation theory in the thermodynamic limit.
So based on perturbation theory this phase is expected to have
a finite region of stability when t > 0.

2. Stripy state

Next we consider the other extended region 0 < V1 < 4/5,
featuring stripy ground states and some types of domain walls.
To first order in t/V1,2 it is not possible to hop and stay in the
ground state manifold. However on a finite cluster there is a
finite order at which the moves sketched in Fig. 4 become pos-
sible. As the order at which this process first occurs diverges
with the linear extent of the cluster, such tunneling events
seem irrelevant at small t/V1,2 in the thermodynamic limit.
It might however be possible that diagonal terms at a certain
order in t/V1,2 discriminate between the pristine stripy states
and the states with domain wall lines. The spectra for N = 32
do however not reveal a simple splitting of the 42 low-lying
states on that sample (c.f. Tab. II). We leave the investigation
of quantum or thermal order by disorder mechanisms in this
phase for future studies.

Now we turn to the two points in the classical phase dia-
gram, which feature a massive ground state degeneracy. These
are the points V1 = 0 and V1 = 4/5 (V1/V2 = 4).

3. Charge modulated (CM) state

At V1 = 0 we have two independent triangular sublattices
with antiferromagnetic interactions. It is known that each state
which has two or one charges on each V2-triangle is a valid
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FIG. 5: (Color online) Low lying energy spectrum in units of the
hopping t for V1 = 0, V2 = 1, t/V2 ⌧ 1. Data for system sizes
N = 18, 24, 42, 54 are shown. The full arrow denotes the band-
width of the lowest 18 levels. Note the collapse of the bandwidth for
N = 42 and N = 54, while the (particle-hole) gap above the 18
states (dashed arrows) remains of order t.

ground state25. When working at half filling the ground space
of the full problem can be obtained by enumerating all ground
states on one triangular sublattice and then summing up the
product of the two sublattice Hilbert spaces over all particle
bipartitions such that the total number of particles amounts to
half filling (i.e. N/2).

The effect of a finite t/V2 is to hop particles from one trian-
gular sublattice to the other one. There are indeed many states
in the ground state manifold where such first order hoppings
are possible while staying in the ground state manifold. The
problem thus maps to a hopping problem on an abstract lattice
living in the constrained Hilbert space, where the sites are the
allowed configurations. This abstract lattice is not homoge-
neous and features sites with different coordination numbers.
It is not known to us how to solve this hopping problem an-
alytically. As a starting point it is instructive to identify the
maximally flippable states (i.e. abstract sites with the largest
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Fig. 22. The N = 18, 24, 26, 28, 30, 32 samples.

but frustrates the two others as well as the non coplanar
solutions. The other samples are frustrating but can allow
a collinear order if twisted boundary conditions (TBC) are
used. This is the case for the N = 18 sample if a twist of
� is applied along t1 or t2.

To search for spiral order, we used TBC and sweep the
whole range [0, 2�] of twist angles �1,2 in the t1 and t2

directions. These specific boundary conditions are defined
as:

S(Ri + tj) = ei�jSz(Ri)S(Ri)e
�i�jSz(Ri). (13)

This allows to look for boundary conditions which would
not frustrate helical ground-states. This approach was found
e�ective for the Heisenberg model on the triangular lat-
tice to deal with samples frustrating the three-sublattice
Néel order [1]. For such samples the ground-state energy
was found to reach its minimum for the twists which re-
lease the frustration: at that point the spectra recover the
characteristic features of Néel order.

A VBC with the pattern of Read and Sachdev [31]
(considered in Sect. 3.3) fits in the N = 30 sample but
not on a N = 32 sample.
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Fig. 22. The N = 18, 24, 26, 28, 30, 32 samples.

but frustrates the two others as well as the non coplanar
solutions. The other samples are frustrating but can allow
a collinear order if twisted boundary conditions (TBC) are
used. This is the case for the N = 18 sample if a twist of
� is applied along t1 or t2.

To search for spiral order, we used TBC and sweep the
whole range [0, 2�] of twist angles �1,2 in the t1 and t2

directions. These specific boundary conditions are defined
as:

S(Ri + tj) = ei�jSz(Ri)S(Ri)e
�i�jSz(Ri). (13)

This allows to look for boundary conditions which would
not frustrate helical ground-states. This approach was found
e�ective for the Heisenberg model on the triangular lat-
tice to deal with samples frustrating the three-sublattice
Néel order [1]. For such samples the ground-state energy
was found to reach its minimum for the twists which re-
lease the frustration: at that point the spectra recover the
characteristic features of Néel order.

A VBC with the pattern of Read and Sachdev [31]
(considered in Sect. 3.3) fits in the N = 30 sample but
not on a N = 32 sample.
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Fig. 22. The N = 18, 24, 26, 28, 30, 32 samples.

but frustrates the two others as well as the non coplanar
solutions. The other samples are frustrating but can allow
a collinear order if twisted boundary conditions (TBC) are
used. This is the case for the N = 18 sample if a twist of
� is applied along t1 or t2.

To search for spiral order, we used TBC and sweep the
whole range [0, 2�] of twist angles �1,2 in the t1 and t2

directions. These specific boundary conditions are defined
as:

S(Ri + tj) = ei�jSz(Ri)S(Ri)e
�i�jSz(Ri). (13)

This allows to look for boundary conditions which would
not frustrate helical ground-states. This approach was found
e�ective for the Heisenberg model on the triangular lat-
tice to deal with samples frustrating the three-sublattice
Néel order [1]. For such samples the ground-state energy
was found to reach its minimum for the twists which re-
lease the frustration: at that point the spectra recover the
characteristic features of Néel order.

A VBC with the pattern of Read and Sachdev [31]
(considered in Sect. 3.3) fits in the N = 30 sample but
not on a N = 32 sample.
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but frustrates the two others as well as the non coplanar
solutions. The other samples are frustrating but can allow
a collinear order if twisted boundary conditions (TBC) are
used. This is the case for the N = 18 sample if a twist of
� is applied along t1 or t2.

To search for spiral order, we used TBC and sweep the
whole range [0, 2�] of twist angles �1,2 in the t1 and t2

directions. These specific boundary conditions are defined
as:

S(Ri + tj) = ei�jSz(Ri)S(Ri)e
�i�jSz(Ri). (13)

This allows to look for boundary conditions which would
not frustrate helical ground-states. This approach was found
e�ective for the Heisenberg model on the triangular lat-
tice to deal with samples frustrating the three-sublattice
Néel order [1]. For such samples the ground-state energy
was found to reach its minimum for the twists which re-
lease the frustration: at that point the spectra recover the
characteristic features of Néel order.

A VBC with the pattern of Read and Sachdev [31]
(considered in Sect. 3.3) fits in the N = 30 sample but
not on a N = 32 sample.
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N = 24 N = 32

FIG. 4: (Color online) Illustration of the stripy charge ordering pattern and the line defects for the N = 24 (left panel) and N = 32 (right
panel) clusters. The left part in each panel indicates a pristine stripy configuration, while the right parts shows how another ground state can be
reached by a one-dimensional collective transposition of particles. For the N = 24 cluster the line move wraps completely around the sample
and connects two ground states without defect lines, while for the N = 32 the indicated shifts of particles generate a ground state with a defect
line, where the region along the lines resembles a rotated pristine stripy state.

1. Néel CDW state

We start with the least degenerate region, 4/5 < V1  1,
where there are only two Néel ground states. These two states
are symmetry related (and thus cannot be split by diagonal
terms) and it is not possible to connect the two states by a
finite order in perturbation theory in the thermodynamic limit.
So based on perturbation theory this phase is expected to have
a finite region of stability when t > 0.

2. Stripy state

Next we consider the other extended region 0 < V1 < 4/5,
featuring stripy ground states and some types of domain walls.
To first order in t/V1,2 it is not possible to hop and stay in the
ground state manifold. However on a finite cluster there is a
finite order at which the moves sketched in Fig. 4 become pos-
sible. As the order at which this process first occurs diverges
with the linear extent of the cluster, such tunneling events
seem irrelevant at small t/V1,2 in the thermodynamic limit.
It might however be possible that diagonal terms at a certain
order in t/V1,2 discriminate between the pristine stripy states
and the states with domain wall lines. The spectra for N = 32
do however not reveal a simple splitting of the 42 low-lying
states on that sample (c.f. Tab. II). We leave the investigation
of quantum or thermal order by disorder mechanisms in this
phase for future studies.

Now we turn to the two points in the classical phase dia-
gram, which feature a massive ground state degeneracy. These
are the points V1 = 0 and V1 = 4/5 (V1/V2 = 4).

3. Charge modulated (CM) state

At V1 = 0 we have two independent triangular sublattices
with antiferromagnetic interactions. It is known that each state
which has two or one charges on each V2-triangle is a valid
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FIG. 5: (Color online) Low lying energy spectrum in units of the
hopping t for V1 = 0, V2 = 1, t/V2 ⌧ 1. Data for system sizes
N = 18, 24, 42, 54 are shown. The full arrow denotes the band-
width of the lowest 18 levels. Note the collapse of the bandwidth for
N = 42 and N = 54, while the (particle-hole) gap above the 18
states (dashed arrows) remains of order t.

ground state25. When working at half filling the ground space
of the full problem can be obtained by enumerating all ground
states on one triangular sublattice and then summing up the
product of the two sublattice Hilbert spaces over all particle
bipartitions such that the total number of particles amounts to
half filling (i.e. N/2).

The effect of a finite t/V2 is to hop particles from one trian-
gular sublattice to the other one. There are indeed many states
in the ground state manifold where such first order hoppings
are possible while staying in the ground state manifold. The
problem thus maps to a hopping problem on an abstract lattice
living in the constrained Hilbert space, where the sites are the
allowed configurations. This abstract lattice is not homoge-
neous and features sites with different coordination numbers.
It is not known to us how to solve this hopping problem an-
alytically. As a starting point it is instructive to identify the
maximally flippable states (i.e. abstract sites with the largest

M point is crucial here
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units of t for various cluster sizes. The clusters with 24 and 36 sites
have a particularly low energy per site. Lower panel: single particle
charge gap �1p/t. This gap amounts to 4 ⇠ 5 t for the system sizes
with a low energy per site.
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FIG. 8: (Color online) Low lying energy spectrum in units of the
hopping t for V1 = 4, V2 = 1, t/V2 ⌧ 1. Data for system sizes
N = 24, 36, 72 are shown. The full arrow denotes the bandwidth
of the lowest 18 levels (N = 36 does not have rotational invariance,
in that case we only expect 6 possible ground states). Note the col-
lapse of the bandwidth for larger clusters, while the (particle-hole)
gap above the 18 states (dashed arrows) remains approximately con-
stant.

states, in agreement with our analysis. On this large lattice
an exhaustive enumeration of all Ising ground states is pro-
hibitive. We thus took the "frustration-free" property of the
classical ground state manifold for granted and enumerated
the frustration-free subspace on N = 72 using a backtracking
algorithm. This state is characterized by both charge modu-
lations (see Fig. 10 for the static charge structure factor) and
kinetic energy modulations.

We also expect the point V1/V2 = 4 to enlarge to an actual
phase at small but finite t/V1,2, because the two neighboring
phases in the Ising limit (the stripy region and the Néel CDW)
both do not gain energy to first order in t/V1,2. The result-
ing qualitative phase diagram is sketched in the lower part of
Fig. 3. As a future study it might be interesting to explore the

FIG. 9: (Color online) Illustration of a maximally flippable state at
V1/V2 = 4 for a the N = 24 sites cluster. Particles which are
flippable to first order in t are indicated by the arrows. The full lines
are guides to the eye and visualize the domain walls between the two
distinct Néel CDW states.
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FIG. 10: (Color online) Charge structure factor of the effective model
at V1 = 4, V2 = 1, t/V2 ⌧ 1 plotted in the enlarged Brillouin zone.
The filled (empty) symbols are data for the ground state at N = 24
(N = 72).

possibility of further phases with wider strips of alternating
CDW domains in between the state discussed so far and the
pristine CDW phase. The competition between the hopping
t and the detuning V1/V2 > 4 might favor such intermediate
states.

IV. NUMERICAL RESULTS

In this section, we will present our systematic numerical
study using ED and typical observables that were used to com-
pute our global phase diagram in Fig. 2. We will first present
some useul tools to detect phase transitions as well as to char-
acterize phases. Then we will provide numerical evidence for

effective model selects Néel states with line 
defects (order by disorder): 

there are 18 maximally flippable such states
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CDW domains in between the state discussed so far and the
pristine CDW phase. The competition between the hopping
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Appendix A: Lattice geometries

Since we are using several kinds of lattices, we give their
definitions using a and b translations to define the torus with
periodic boundary conditions.

Name a b sym. group K (2) M (3) X (6)
18 (6, 0) (3, 3

p
3) C6v yes no no

24 (6, 2
p

3) (0, 4
p

3) C6v yes yes yes
26 (7,

p
3) (2, 4

p
3) C6 no no no

28 (7,
p

3) (0, 4
p

3) Z2 no yes (1) no
30a (3, 5

p
3) (�3, 5

p
3) C2 ⇥ C2 yes no no

30b (5, 3
p

3) (�5, 3
p

3) C2 ⇥ C2 no no no
32 (8, 0) (4, 4

p
3) C6v no yes no

34 (9,
p

3) (2, 4
p

3) Z2 no no no
36 (6, 0) (6, 6

p
3) C2 ⇥ C2 yes yes (1) yes (2)

38 (8, 2
p

3) (1, 5
p

3) C6 no no no
40 (10, 0) (4, 4

p
3) Z2 no yes (1) no

42 (9,
p

3) (3, 5
p

3) C6 yes no no

TABLE I: Finite lattices studied in this work. Listed are the number
of spins N ; the basis vectors a, b in the plane; the symmetry point
group; presence of the K point; M point; X point.

Appendix B: Counting of Ising Groundstates

Andreas, please provide a few sentences !

Ns V1 = 0 0 < V1 < 4/5 V1 = 4/5 4/5 < V1  1

18 666 ; 38 2
24 5’526 6 446 2
26 3’042 ; 340 2
28 8’964 2 858 2
30a 30’618 ; 692 2
30b 11’300 ; 888 2
32 1’764 42 1’520 2
36 230’014 14 3’454 2
38 - - 5’208 2
40 - - - 2
42 1’211’004 - 8’880 2
54 59’711’598 - - 2
72 - - 8’705’390 2

TABLE II: Ground state degeneracy in the classical limit t = 0 at
half filling.

Appendix C: Current correlations

We provide in the following plots the current-current corre-
lations measured on all available clusters for V2/t = 1 and 2
respectively (at fixed V1 = 0).

Phase Diagram of a Frustrated Quantum Antiferromagnet on the Honeycomb Lattice:
Magnetic Order versus Valence-Bond Crystal Formation

A. F. Albuquerque,1, 2 D. Schwandt,1, 2 B. Hetényi,3, 4 S. Capponi,1, 2 M. Mambrini,1, 2 and A. M. Läuchli3, ⇤

1Laboratoire de Physique Théorique, Université de Toulouse, UPS (IRSAMC), F-31062 Toulouse, France
2CNRS, LPT (IRSAMC), F-31062 Toulouse, France

3Max Planck Institut für Physik komplexer Systeme, D-01187 Dresden, Germany
4Institut für Theoretische Physik, Technische Universität Graz, Petersgasse 16, A-8010 Graz, Austria

(Dated: May 16, 2011)

We present a comprehensive computational study of the phase diagram of the frustrated S = 1/2 Heisenberg
antiferromagnet on the honeycomb lattice, with second-nearest (J

2

) and third-neighbor (J
3

) couplings. Using
a combination of exact diagonalizations of the original spin model, of the Hamiltonian projected into the nearest
neighbor short range valence bond basis, and of an effective quantum dimer model, as well as a self-consistent
cluster mean-field theory, we determine the boundaries of several magnetically ordered phases in the region
J
2

, J
3

2 [0, 1], and find a sizable magnetically disordered region in between. We characterize part of this mag-
netically disordered phase as a plaquette valence bond crystal phase. At larger J

2

, we locate a sizable region
in which staggered valence bond crystal correlations are found to be important, either due to genuine valence
bond crystal ordering or as a consequence of magnetically ordered phases which break lattice rotational symme-
try. Furthermore we find that a particular parameter-free Gutzwiller projected tight-binding wave function has
remarkably accurate energies compared to finite-size extrapolated ED energies along the transition line from
conventional Néel to plaquette VBC phases, a fact that points to possibly interesting critical behavior - such as a
deconfined critical point - across this transition. We also comment on the relevance of this spin model to model
the spin liquid region found in the half-filled Hubbard model on the honeycomb lattice.

PACS numbers: 75.10.Kt, 75.10.Jm, 75.40.Mg

Magnetic frustration is a very appealing route to weaken
or destroy magnetic order, which can result in new phases of
matter: these phases can usually be classified and named ac-
cording to the broken symmetry (spin, lattice) if any, or they
can belong to the spin-liquid zoo when no symmetry is bro-
ken1. The quest for a genuine gapped spin-liquid in a spin-1/2
model with SU(2) symmetry and an odd number of sites in
the unit cell has started a long-time ago with the proposal by
Anderson2 that the ground-state of the Heisenberg model on
the triangular lattice could be viewed as a superposition of
short-range valence bonds (VB), called a resonating valence
bond (RVB) state. For the specific example of the triangular
lattice it turned out later however that a magnetically ordered
state is realized3. Up to now, there is still no firmly estab-
lished spin-liquid ground-state with the aforementioned prop-
erties in a reasonably realistic SU(2) spin model, although
there are potential candidates, such as the triangular lattice
with ring exchange interactions4 or the Heisenberg model on
the kagomé lattice5. On the other hand, if one considers lat-
tices with an even number of sites per unit cell, then Hasting’s
generalization6 of the Lieb-Schultz-Mattis theorem7 does not
apply, and it is possible in principle to stabilize a magnetically
disordered ground-state that does not break any symmetry and
has only trivial topological properties. One can think for in-
stance of a Heisenberg model on a square bilayer lattice with
strong interlayer exchange. The honeycomb lattice is peculiar
in this respect because no simple lattice-symmetry preserving
deformation is known which would lead to a gapped magnetic
state8.

⇤ aml@pks.mpg.de
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FIG. 1. (Color online) (a) Honeycomb lattice with the different spin
exchange interactions considered in this paper; (b) corresponding
Brillouin zone with relevant k points.

In recent years a promising new direction in the search for
spin liquids has opened up, focusing on the behavior of insu-
lating phases upon approaching the Mott insulator-metal tran-
sition. In the half-filled triangular lattice Hubbard model a
picture with a spin bose metal spin liquid phase sandwiched
between the metallic phase at small U/t and the magnetically
ordered Néel phase at large U/t has emerged10–14. It has been
recognized that this spin liquid phase can be understood in
terms of a pure spin model, where the rising charge fluctua-
tions are cast into an increasingly complex spin Hamiltonian
beyond the Heisenberg model12,14. A second striking exam-
ple of a spin liquid located between a magnetically ordered
phase and a (semi)metal has recently been uncovered in the
half-filled Hubbard model on the honeycomb lattice15. Such
spin liquid phase is reported to have a small spin gap and no
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For V1=0, there exists a perfect correlation pattern 
only at small V2/t

10

FIG. 18: (Color online) Current-current correlations on a given sublattice between a reference bond (black) and other bonds for V2/t = 1,
2 and 3 (from left to right) with fixed V1 = 0 on N = 24 sample. Periodic boundary conditions are used. Blue and red correspond to
positive/negative correlations according to the orientations expected in the QAH phase (taken here to be clockwise on all hexagons). Width is
proportional to the correlation.

FIG. 19: (Color online) Same as Fig. 18 for V1 = 0 and V2/t = 1 on various clusters having C6 symmetry. From left to right: N = 26, 32,
38 and 42.

FIG. 20: (Color online) Same as Fig. 18 for V1 = 0 and V2/t = 2.
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FIG. 18: (Color online) Current-current correlations on a given sublattice between a reference bond (black) and other bonds for V2/t = 1,
2 and 3 (from left to right) with fixed V1 = 0 on N = 24 sample. Periodic boundary conditions are used. Blue and red correspond to
positive/negative correlations according to the orientations expected in the QAH phase (taken here to be clockwise on all hexagons). Width is
proportional to the correlation.

FIG. 19: (Color online) Same as Fig. 18 for V1 = 0 and V2/t = 1 on various clusters having C6 symmetry. From left to right: N = 26, 32,
38 and 42.

FIG. 20: (Color online) Same as Fig. 18 for V1 = 0 and V2/t = 2.
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FIG. 1. (Color online) Unit cell and mean-field parameters of our model. In each panel we show 9 distinct effective hoppings, making up a
total of 27 (see Appendix A 1).

in Fig. 1. In addition, there are six local energy terms (three
per sublattice, ρA and ρB), of which only five are independent
due to charge conservation. See Appendix A 1 for details.

Using the variational mean-field approach, one finds the set
of 33 = 3 × 9 + 6 mean-field equations that, complemented
by charge conservation, determine the mean-field parameters
and the chemical potential µ (see Appendixes A 2 and A 3).
The mean-field equations read as

ξij = −V1

N

∑

k

γ
ij
k ⟨b†j (k)ai(k)⟩MF, (6)

χA,δ
ij = −V2

N

∑

k

λA,δ
k,ij ⟨a

†
j (k)ai(k)⟩MF, (7)

χB,δ
ij = −V2

N

∑

k

λB,δ
k,ij ⟨b

†
j (k)bi(k)⟩MF, (8)

ρA
i = V1nB + 3V2nA − 3V : 2nA

i , (9)

ρB
i = V1nA + 3V2nB − 3V2n

B
i , (10)

where λA,δ
k,ij , λB,δ

k,ij are phase factors analogous to γ
ij
k defined

in Eq (3), nc
i = 1

N

∑
k⟨c

†
i (k)ci(k)⟩MF and nc =

∑3
i=1 nc

i with
c = A,B. Detailed expressions for these matrices can be found
in Appendix A 2. The notation ⟨. . .⟩MF means average in the
macrocanonical ensemble taking the mean-field Hamiltonian
in the Boltzmann factor.

In order to obtain the mean-field phase diagram, we solve
the mean-field equations self-consistently (see Appendix A 3)
and take the solution (if more than one is obtained) that
minimizes the free energy in Eq. (A10) (see Appendix A 4).
Care must be taken with charge-like order parameters, Eqs. (9)
and (10). Due to the frustration introduced by NNN interaction,
these order parameters may flow to a non-self-consistent
solution where the charge-like order parameters in different
sublattices interchange at each step. Apart from this subtlety,
getting a solution is straightforward.

We will analyze first the phase diagram obtained at half-
filling, which is interesting on its own and later discuss the
modification introduced in the V2 = 0 case by the charge
decoupling. We will see that the charge modulated phases
wash out the topologically nontrivial phases. Finally, we see

how these are restored by the inclusion of the second-neighbor
interaction.

A. Half-filling

Let us first analyze the half-filled case, where n ≡ nA +
nB − 3 = 0. This case provides a test to the present mean-field
analysis, since a similar approach, also using a 6-atom unit
cell, has been taken in Ref. 29. For comparison, we show the
phase diagram obtained in Ref. 29 in the left panel of Fig. 2.
In the right panel of Fig. 2, we can see the phase diagram of
the present work (we use the same color code). We plot the
different phases (that will be described in what follows) as a
function of the interaction strength V1 and V2 in units of the
hopping parameter t . The half-filled case was first explored
in the original lattice in Ref. 25 and nontrivial topological
phases were already encountered for values of the interaction
V2 > V1.

For V1 ! 1.5t and V2 ! 2t , the two phase diagrams
coincide. For V1 " 1.5t , however, we find that the semimetallic
(SM) and the charge density wave (CDW) phases are robust
against the Kekulé phase. The Kekulé phase is characterized
by an alternating bond strength as shown schematically in
the inset of the left-hand side of Fig. 3. This distortion is
important in the physics of graphene because it opens a gap
in the spectrum breaking the translational symmetry of the
original honeycomb lattice while preserving time reversal (T )

FIG. 2. (Color online) (Left) Mean-field phase diagram for the
half-filling case reproduced from Ref. 29. The various phases are
described in the text. SM means semimetal. (Right) Mean-field phase
diagram obtained in present work. Lines are guides to the eyes. CMs
stands for the charge modulated phase discussed in the text.
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FIG. 3. (Color online) (i) ED phase diagram at n = 1
2 for a ! = 3 × 3 system. The brightness of each color is proportional to the size of

the many-body gap "/t . The right-hand side shows the energy spectrum against total momentum Q = Q1 + L1Q2 for the (b) CMs phase, (c)
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diagram calculated following Ref. 10.

argue that they correspond to the SM, Kekulé, CDW, and CMs
phases and discuss their main signatures. We define a phase
transition when the gap above the number of ground states on
either side of the transition is equal. We note that the phase
boundaries might be altered by going to larger systems or
applying alternative definitions to identify the phases.

In the following section, we will use these findings to relate
to previous works to finally compare with the mean-field
diagram in Fig. 3(ii) of Ref. 10 which includes all possible
(nonsuperconducting) mean-field decouplings with a tripled
unit cell. In particular, this phase diagram is consistent with
past mean-field studies for which the absence of the Kekulé4,7

or CMs phases4,5,7,9 in the mean-field phase diagrams was due
to the fact that these works did not allow for these mean-field
solutions.

A. Semimetal phase

This phase, labeled SM and shown in red in Fig. 3(a),
is straightforward to characterize since it stems from the
noninteracting (V1 = V2 = 0) limit of Hamiltonian (2). For
! = 3 × 3 at half-filling (N = 9), there are 2! = 18 lattice
sites to fit 9 particles. Seven of them sit at the lower states, one
at the ! point at (0,0), and six particles go to the six degenerate
momenta at (1,0),(2,0),(0,1),(2,1),(0,2),(1,2). We have two
particles left for four degenerate single-particle states, two at
the K point and two at the K ′ point, since at these points there
are two degenerate states, one from each band. This gives a
freedom to choose the ground state. We have two particles to
fill four states, the degeneracy of which is given by the binomial
coefficient C(4,2) = 6 which is the ground-state degeneracy
for the noninteracting case. Out of these six possibilities, four
of them have a particle at K and a particle at K ′ and thus a total
momentum of Q = 0. The remaining two configurations have
two particles at the same valley. Having both at K = (1,1)
results in a total momentum (2,2) or Q = 8. Similarly placing
the two last particles at K ′ = (2,2) we expect to have a single
state at momentum (1,1), or Q = 4.

To summarize, the noninteracting Hamiltonian in ED has a
sixfold-quasidegenerate ground state at half-filling with four
states at Q = 0, one state at Q = 4 and one state at Q = 8.

We observe this structure for a finite region of parameters
colored red in Fig. 3(a) connected to the noninteracting
Hamiltonian and thus we interpret this phase as a SM phase.
The spectrum for such phase is shown in Fig. 3(d) where
the sixfold-quasidegenerate ground state is observed at the
momenta discussed above. The spectral evolution of the energy
levels within the phase upon changing V1 and V2 is smooth with
no level crossings.

Finally, note that the SM phase has all discrete symmetries,
i.e., time reversal (T ), inversion (I), and the combined action
of both (T I). Out of the sixfold-quasidegenerate ground states,
the states at Q = K ,K ′ would interchange under the action of
the operators representing T , I. The operation T I leaves the
momentum quantum numbers invariant.

B. Charge density wave phase

The second phase that we identify is labeled CDW and
is shown in light blue in Fig. 3(a). Its spectrum shows a
twofold-degenerate ground state at Q = 0 [Fig. 3(e)] and
would break spontaneously the sublattice symmetry in the
thermodynamic limit. The most transparent way to understand
that this phase is indeed a CDW is to investigate the strong
coupling limit at V1/t → ∞ with V2 = 0 to which this phase
is adiabatically connected. Calculating the degeneracy of such
a strong coupling state is a classical problem, the ground state
of which is represented in Fig. 4.

As only one sublattice is occupied in either of these classical
ground states, both of them are zero-energy eigenstates of
the NN interaction V1. We expect this state to appear at
total momentum Q = 0 since it is a charge density wave
(CDW) order state within the unit cell. Indeed, the ED of the
Hamiltonian with V1 ̸= 0 and V2 = t = 0 yields exactly this
twofold-degenerate ground state at zero energy. The excited
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FIG. 1. (Color online) Unit cell and mean-field parameters of our model. In each panel we show 9 distinct effective hoppings, making up a
total of 27 (see Appendix A 1).

in Fig. 1. In addition, there are six local energy terms (three
per sublattice, ρA and ρB), of which only five are independent
due to charge conservation. See Appendix A 1 for details.

Using the variational mean-field approach, one finds the set
of 33 = 3 × 9 + 6 mean-field equations that, complemented
by charge conservation, determine the mean-field parameters
and the chemical potential µ (see Appendixes A 2 and A 3).
The mean-field equations read as

ξij = −V1

N

∑

k

γ
ij
k ⟨b†j (k)ai(k)⟩MF, (6)

χA,δ
ij = −V2

N

∑

k

λA,δ
k,ij ⟨a

†
j (k)ai(k)⟩MF, (7)

χB,δ
ij = −V2

N

∑

k

λB,δ
k,ij ⟨b

†
j (k)bi(k)⟩MF, (8)

ρA
i = V1nB + 3V2nA − 3V : 2nA

i , (9)

ρB
i = V1nA + 3V2nB − 3V2n

B
i , (10)

where λA,δ
k,ij , λB,δ

k,ij are phase factors analogous to γ
ij
k defined

in Eq (3), nc
i = 1

N

∑
k⟨c

†
i (k)ci(k)⟩MF and nc =

∑3
i=1 nc

i with
c = A,B. Detailed expressions for these matrices can be found
in Appendix A 2. The notation ⟨. . .⟩MF means average in the
macrocanonical ensemble taking the mean-field Hamiltonian
in the Boltzmann factor.

In order to obtain the mean-field phase diagram, we solve
the mean-field equations self-consistently (see Appendix A 3)
and take the solution (if more than one is obtained) that
minimizes the free energy in Eq. (A10) (see Appendix A 4).
Care must be taken with charge-like order parameters, Eqs. (9)
and (10). Due to the frustration introduced by NNN interaction,
these order parameters may flow to a non-self-consistent
solution where the charge-like order parameters in different
sublattices interchange at each step. Apart from this subtlety,
getting a solution is straightforward.

We will analyze first the phase diagram obtained at half-
filling, which is interesting on its own and later discuss the
modification introduced in the V2 = 0 case by the charge
decoupling. We will see that the charge modulated phases
wash out the topologically nontrivial phases. Finally, we see

how these are restored by the inclusion of the second-neighbor
interaction.

A. Half-filling

Let us first analyze the half-filled case, where n ≡ nA +
nB − 3 = 0. This case provides a test to the present mean-field
analysis, since a similar approach, also using a 6-atom unit
cell, has been taken in Ref. 29. For comparison, we show the
phase diagram obtained in Ref. 29 in the left panel of Fig. 2.
In the right panel of Fig. 2, we can see the phase diagram of
the present work (we use the same color code). We plot the
different phases (that will be described in what follows) as a
function of the interaction strength V1 and V2 in units of the
hopping parameter t . The half-filled case was first explored
in the original lattice in Ref. 25 and nontrivial topological
phases were already encountered for values of the interaction
V2 > V1.

For V1 ! 1.5t and V2 ! 2t , the two phase diagrams
coincide. For V1 " 1.5t , however, we find that the semimetallic
(SM) and the charge density wave (CDW) phases are robust
against the Kekulé phase. The Kekulé phase is characterized
by an alternating bond strength as shown schematically in
the inset of the left-hand side of Fig. 3. This distortion is
important in the physics of graphene because it opens a gap
in the spectrum breaking the translational symmetry of the
original honeycomb lattice while preserving time reversal (T )

FIG. 2. (Color online) (Left) Mean-field phase diagram for the
half-filling case reproduced from Ref. 29. The various phases are
described in the text. SM means semimetal. (Right) Mean-field phase
diagram obtained in present work. Lines are guides to the eyes. CMs
stands for the charge modulated phase discussed in the text.
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be suppressed; instead, we consider the possibility of gen-
erating bond order by defining the following order parame-
ter for i, j next nearest neighbors: !ij ! !"ji ! hcyi cji. Let
a1, a2, a3 be the nearest-neighbor displacements from a B
site to an A site such that z # a1 $ a2 is positive. We also
define the displacements b1 ! a2 % a3, b2 ! a3 % a1,
etc., which connect two neighboring sites on the same
sublattice (Fig. 1). A translational and rotational invariant
ansatz of !ij is chosen as

 !i;i&bs !
!
!A ! j!jei"A ; i 2 A
!B ! j!jei"B ; i 2 B

; (2)

which are complex scalars that live along the directed
second-neighbor links. The real and imaginary parts of
!ij break different discrete symmetries and are thus dis-
tinct order parameters: Re'!ij( breaks particle-hole sym-
metry, Im'!ij( breaks time-reversal symmetry, and both
break the C6v point-group symmetry when "A &"B ! 0.

Because of translational symmetry, the mean-field free-
energy at T ! 0 is readily obtained:
 

F'#;!; !";"( ! %
X

k

""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
jt'k(j2 & 'V1#& 2V2j!jSk& !"S"(2

q

& 3L2'V1#2 & 2V2j!j2(: (3)

Here, t'k( ! P3
n!1 exp'ik # an(, !" ! '"A &"B(=2, " !

'"A %"B(=2, Sk& !" !
P3
n!1 sin'k # bn & !"(, S" ! sin".

Thus, the next-neighbor hopping amplitudes are purely real
only when both " ! 0 and !" ! 0.

When both # and ! ! 0, and at half-filling, the system is
a semimetal with two Fermi pointsK) that obeyK) # bi !
)2$=3 and the density of states vanishes linearly; the
dispersion in the vicinity of these so-called Dirac points
is governed by a 2D massless Dirac Hamiltonian in k
space. The CDW phase corresponds to an ordinary insula-
tor with a gap at the Fermi energy. As for !, its phase
relative to the nearest-neighbor hopping amplitude plays
an important role in determining its properties: while a
nonzero Re'!(merely shifts the energy of the Dirac points,
a nonzero imaginary part Im'!( opens a gap at the Fermi
points. Thus, when the system remains at half-filling, it is
more favorable to develop purely imaginary next-neighbor
hopping amplitudes; such a configuration corresponds to a
phase with spontaneously broken time-reversal symmetry.

To see whether such a phase can be favored, we mini-
mize the free-energy and arrive at the following self-
consistent equations:

 # ! 1

6L2

X

k

V1#& 2V2!Sk& !"S""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
jt'k(j2 & 'V1#& 2V2!Sk& !"S"(2

q ; (4)

 ! ! S"
6L2

X

k

Sk& !"'V1#& 2V2!Sk& !"S"("""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
jt'k(j2 & 'V1#& 2V2!Sk& !"S"(2

q : (5)

Because of the vanishing density of states near the Fermi

points, there is no instability towards any order with infini-
tesimal interactions. Interestingly, the self-consistent equa-
tion for ! shows that a nontrivial solution can occur only
when " ! 0, when V1 ! 0, beyond a critical value of
V2c > 0, which satisfies

 

1

V2c
!
S2
"

3L2

X

k

S2
k& !"

jtkj
; (6)

a phase in which j!j> 0 , !" ! 0, and " ! )$=2 is
favored. Thus, the system acquires purely imaginary
second-neighbor hoppings and breaks time-reversal sym-
metry. In the vicinity of this saddle point, fluctuations in
both !" and " are gapped. This configuration is stable at
finite V1 and thus does not require fine-tuning (see Fig. 2).
The band insulator version of the CDW state was consid-
ered in Ref. [15], while the quantum Hall (QH) state on a
honeycomb lattice was considered in Ref. [5]. The phase
with nonvanishing imaginary ! is precisely equivalent to
the model in Ref. [5]. In this phase, the filled band has a
nonzero Chern number [11] and is an integer quantum Hall
effect phase that is realized without Landau levels [5]. QH
states without Landau levels are referred to here as the
QAH states. However, the topologically nontrivial gap for
the QAH state arises here from many-body interactions,
and we shall refer to such states as topological Mott
insulators.

The mean-field phase diagram is shown in Fig. 2. There
is a continuous transition from the semimetal to either the
CDW or the QAH phase, and there is also a first-order
transition from the CDW to the QAH phase that terminates
at a bicritical point. By integrating out the fermionic fields,
it is possible to construct a Landau-Ginzburg (LG) theory
near the semimetallic region. Because of the linear disper-
sion of the Fermi points, the LG free-energy contains
anomalous terms of the form j#j3 and jIm'!(j3 [16].
Thus, even within mean-field theory, the CDW order pa-
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FIG. 2 (color online). Phase diagram for spinless fermions
(t ! 1). The semimetallic (SM) state that occurs at weak cou-
pling is separated from the CDW and the topological QAH states
via a continuous transition. The line separating the QAH and
CDW marks a first-order transition, which terminates at a
bicritical point.
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Concluding remarks

Clarification of the phase diagram with new phases at large interactions

No evidence for Chern insulators

L. Wang, P. Corboz and M. Troyer, NJP ‘14
E. Fulton Huffman and S. Chandrasekharan, PRB  ‘14

Z.-X. Li, Y.-F. Jiang, and H. Yao, arXiv:1408

Possible progress in solving the sign problem, as was done for V2=0 recently ?

Ref: S. Capponi and A. M. Läuchli, in preparation

Perspectives

Investigate closely related models to look for topological insulators !


