# Phase diagram of spinless fermions on the honeycomb lattice 

Sylvain CAPPONI



Würzburg 25/02/2015
Ref: S. Capponi and A. M. Läuchli, in preparation

## Motivation

- What if one could generate topological insulating phases without needing spin-orbit?
- There are well-known examples of topological phases: insulators in the bulk but with gapless edge states

Quantum Anomalous Hall (QAH)

## Quantum spin Hall (QSH)

spinless fermions
breaks T
chiral edge mode charge currents
Haldane, PRL'88

see review by X.-L. Qi and S.-C. Zhang, RMP '11

## Motivation

- Mean-field results for simple model: YES!
- In the spinless case, this realizes famous Haldane model with interactions (aka Chern insulator)!
spinless fermions

spinful fermions

S. Raghu, X.-L. Qi, C. Honerkamp, S.-C. Zhang, PRL '08


## What about classical phases ?

- But for large V's, one expects other CDW-like instabilities (Wigner crystallization)!
- This is indeed found using larger unit-cell mean-field approaches

C. Weeks and M. Franz, PRB '10


Grushin et al., PRB '13

CM : charge modulation (breaks $\mathrm{A}\langle->\mathrm{B}$ ) $K=$ Kekulé pattern on hexagons

## What about numerics?

Hard problem since there is a sign problem (for V2>0) despite particle-hole symmetry

## ED (up to $\mathrm{N}=30$ sites)




García-Martínez et al., PRB '13
M. Daghofer and M. Hohenadler, PRB '14

Grushin et al., PRB '13

## Outline

- Focus on the spinless case
- Study of the classical limits + perturbation
- Exact Diagonalization of the quantum model
- Global phase diagram and discussion


## Model and methods

- Interacting spinless fermions on honeycomb

$$
\mathcal{H}=-t \sum_{\langle i j\rangle} c_{i}^{\dagger} c_{j}+h . c .+V_{1} \sum_{\langle i j\rangle}\left(n_{i}-1 / 2\right)\left(n_{j}-1 / 2\right)+V_{2} \sum_{\langle\langle i j\rangle\rangle}\left(n_{i}-1 / 2\right)\left(n_{j}-1 / 2\right)
$$

Working at half-filling


## Limit of large interactions

- Ising model with competing interactions V1 and V2
- Then, we will ask what is the effect of a small $t$ ?

Phase separation issue Corboz et al., EPL '12


## Limit of large interactions

$\mathrm{V}_{2}>0 \quad \mathrm{~V}_{1}=0 \quad 2$ disconnected triangular lattices.
For each of them, any configuration with 1 or 2 particles per $\mathrm{V}_{2}$ triangle is a GS.
extensive degeneracy at half-filling !
however 18 uud-ddu configurations are maximally flippable
effective model spectrum


charge modulation tripling of the unit cell

## Limit of large interactions

$0<\mathrm{V}_{1}<4 \mathrm{~V}_{2}$
stripy states with sub-extensive degeneracy

$$
N=32
$$

order-by-disorder should select some states!

M point is crucial here

## Limit of large interactions

## $\mathrm{V}_{1}=4 \mathrm{~V}_{2}$

extensive degeneracy
effective model selects Néel states with line defects (order by disorder): there are 18 maximally flippable such states

charge modulation

+ kinetic energy


## Limit of large interactions

## - Effect of a small hopping in perturbation



## Exact Diagonalizations

- Cluster properties are crucial

| Name | $\mathbf{a}$ | $\mathbf{b}$ | sym. group | $\mathrm{K}(2)$ | $\mathrm{M}(3)$ | $\mathrm{X}(6)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 18 | $(6,0)$ | $(3,3 \sqrt{3})$ | $C_{6 v}$ | yes | no | no |
| 24 | $(6,2 \sqrt{3})$ | $(0,4 \sqrt{3})$ | $C_{6 v}$ | yes | yes | yes |
| 26 | $(7, \sqrt{3})$ | $(2,4 \sqrt{3})$ | $C_{6}$ | no | no | no |
| 28 | $(7, \sqrt{3})$ | $(0,4 \sqrt{3})$ | $Z_{2}$ | no | yes $(1)$ | no |
| 30 a | $(3,5 \sqrt{3})$ | $(-3,5 \sqrt{3})$ | $C_{2} \times C_{2}$ | yes | no | no |
| 30 b | $(5,3 \sqrt{3})$ | $(-5,3 \sqrt{3})$ | $C_{2} \times C_{2}$ | no | no | no |
| 32 | $(8,0)$ | $(4,4 \sqrt{3})$ | $C_{6 v}$ | no | yes | no |
| 34 | $(9, \sqrt{3})$ | $(2,4 \sqrt{3})$ | $Z_{2}$ | no | no | no |
| 36 | $(6,0)$ | $(6,6 \sqrt{3})$ | $C_{2} \times C_{2}$ | yes | yes $(1)$ | yes $(2)$ |
| 38 | $(8,2 \sqrt{3})$ | $(1,5 \sqrt{3})$ | $C_{6}$ | no | no | no |
| 40 | $(10,0)$ | $(4,4 \sqrt{3})$ | $Z_{2}$ | no | yes $(1)$ | no |
| 42 | $(9, \sqrt{3})$ | $(3,5 \sqrt{3})$ | $C_{6}$ | yes | no | no |



## Energetics

## $\mathrm{V}_{1}=0$ line


semi-metal charge-modulated

$$
\operatorname{deg}=18
$$

## $\mathrm{V}_{1}=4$ line



Kekulé
stripy

## Along the $\mathrm{V}_{1}=4 \mathrm{~V}_{2}$ line



## (Charge) current correlations

- For $\mathrm{V}_{1}=0$, there exists a perfect correlation pattern only at small $V_{2} / t$



## Finite-size scaling

- Sample-to-sample variations, but perfect correlations still

$\mathrm{V}_{2} / \mathrm{t}=1$
all these clusters have C6 symmetry


## Current structure factor

- Sample variations can be partly understood



## Global Phase Diagram





## Concluding remarks

- Clarification of the phase diagram with new phases at large interactions
- No evidence for Chern insulators

Ref: S. Capponi and A. M. Läuchli, in preparation

## Perspectives

- Possible progress in solving the sign problem, as was done for $\mathrm{V}_{2}=0$ recently ?
E. Fulton Huffman and S. Chandrasekharan, PRB '14
L. Wang, P. Corboz and M. Troyer, NJP '14
Z.-X. Li, Y.-F. Jiang, and H. Yao, arXiv:1408
- Investigate closely related models to look for topological insulators !

